Skip to content

Commit 705f6f7

Browse files
author
Ioana
committed
alt version
1 parent 93ebcf0 commit 705f6f7

File tree

1 file changed

+59
-57
lines changed

1 file changed

+59
-57
lines changed

notes/influence_stories.tex

Lines changed: 59 additions & 57 deletions
Original file line numberDiff line numberDiff line change
@@ -414,7 +414,65 @@ \subsection{From transition systems to posets}
414414
\end{align*}
415415
\end{example}
416416

417-
\subsection{Refinement of decorated posets}
417+
\subsection{Interpreting inhibition on posets}
418+
419+
%In interpreting our logic, we work with a set of posets in $\mathcal{S}$ and a set of events $\cup_{s\in\mathcal{S}} E_s$.
420+
421+
\begin{definition}[Linear extensions of posets]
422+
A linear extension, denoted $\underline{s}$, of a poset $s=(E,\tleq)$ is any total order that extends the partial order $\tleq$. We denote $\linear(s)$ the set of all possible linear extensions of $s$.
423+
%% \[
424+
%% (E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, e_1\leq e_2\implies e_1\seq e_2.
425+
%% \]
426+
A linear extension of a augmented poset $s=(E,\cover,\dashv)$ is any total order such that
427+
\begin{align*}
428+
(E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, &e_1\leq e_2\implies e_1\seq e_2\\
429+
& e_1\dashv e_2\implies e_2\seq e_1.
430+
\end{align*}
431+
\end{definition}
432+
433+
\begin{definition}
434+
Let $\underline s=(E,\seq\redl{+},\redl{-},\labl)$ be a linear extension of a decorated poset $s$. A \emph{concretisation} function $\mathtt{Concret}:E\leftrightarrow \{t_1,\cdots t_n\}$ is a bijection between events in $E$ and a set of transitions such that
435+
\begin{align*}
436+
e_1\redl{+}_s e_2 \iff& \mathtt{Concret}(e_1) = t_1, \mathtt{Concret}(e_1) = t_2, \text{ such that }t_1<_{t_1;t_2}t_2\\
437+
&\text{ and the causal pair of }t_1<_{t_1;t_2}t_2\text{ is induced by }s.
438+
\end{align*}
439+
\end{definition}
440+
441+
442+
\begin{definition}[Refinement of an event in a poset]
443+
Let $e$ be an event in a decorated poset $s=(E,\redl{+},\redl{-},\labl)$.
444+
Define $\mathtt{Concret}(e\in s) = \mathtt{Concret}(e)$ for $\mathtt{Concret}:\underline{s}\to\{t_1,\cdots t_n\}$ a concretisation function.
445+
%We call such a graph $M$ a \emph{context of application} of $e$ in $s$.
446+
\end{definition}
447+
448+
\begin{definition}[Refinement based on negative influence]
449+
\label{def:ref_neg_infl}
450+
For two posets $s_1,s_2$ and two events $e_1\in s_1$ and $e_2\in s_2$ such that $\mathtt{Concret}(e_1\in s_1) = M_1\Rightarrow N_1$ and $\mathtt{Concret}(e_2\in s_2) = M_2\Rightarrow N_2$, define $\mathtt{Concret}(e_1\in s_1\redl{-} e_2\in s_2) = M$ for which the diagram below commutes:
451+
\[
452+
\begin{tikzpicture} %[scale=0.8]
453+
\node (o) at (0,-0.5) {\(O\)};
454+
\node (n) at (0,2) {\(M\)};
455+
\node (l1) at (-1,0) {\(L_1\)};
456+
\node (l2) at (1,0) {\(L_2\)};
457+
\node (n1) at (-1,1) {\(M_1\)};
458+
\node (n2) at (1,1) {\(M_2\)};
459+
\draw [->] (l1) -- (n1);
460+
\draw [->] (l2) -- (n2);
461+
\draw [->] (o) -- (l1);
462+
\draw [->] (o) -- (l2);
463+
\draw [->] (n1) -- (n);
464+
\draw [->] (n2) -- (n);
465+
\end{tikzpicture}
466+
\]
467+
where $\labl(e_1)\redl{-}_s\labl(e_2)$, for some cospan $s:L_1\remb O\lemb L_2$.
468+
\end{definition}
469+
470+
\subsection{From posets to traces}
471+
%\input{old_concret}
472+
473+
%\input{old_ref}
474+
475+
%\subsection{Refinement of decorated posets}
418476

419477
\begin{lemma}[Update of a decoration after a refinement]
420478
\label{lem:update_dec}
@@ -578,17 +636,6 @@ \subsection{Refinement of decorated posets}
578636
If $s$ is a valid decorated poset then for any two events $e_1,e_2$ in $s$, $s_{(e_1\otimes e_2)}$ is also a valid decorate poset.
579637
\end{lemma}
580638

581-
\begin{definition}[Linear extensions of posets]
582-
A linear extension, denoted $\underline{s}$, of a poset $s=(E,\tleq)$ is any total order that extends the partial order $\tleq$. We denote $\linear(s)$ the set of all possible linear extensions of $s$.
583-
%% \[
584-
%% (E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, e_1\leq e_2\implies e_1\seq e_2.
585-
%% \]
586-
A linear extension of a augmented poset $s=(E,\cover,\dashv)$ is any total order such that
587-
\begin{align*}
588-
(E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, &e_1\leq e_2\implies e_1\seq e_2\\
589-
& e_1\dashv e_2\implies e_2\seq e_1.
590-
\end{align*}
591-
\end{definition}
592639

593640
\begin{definition}[Refinement of a poset]
594641
\label{def:ref_poset}
@@ -602,48 +649,3 @@ \subsection{Refinement of decorated posets}
602649
&\underline s\text{ otherwise.}\\
603650
\end{align*}
604651
\end{definition}
605-
606-
607-
\subsection{From posets to traces}
608-
%\input{old_concret}
609-
610-
\begin{definition}
611-
Let $\underline s=(E,\seq\redl{+},\redl{-},\labl)$ be a linear extension of a decorated poset $s$. A \emph{concretisation} function $\mathtt{Concret}:E\leftrightarrow \{t_1,\cdots t_n\}$ is a bijection between events in $E$ and a set of transitions such that
612-
\begin{align*}
613-
e_1\redl{+}_s e_2 \iff& \mathtt{Concret}(e_1) = t_1, \mathtt{Concret}(e_1) = t_2, \text{ such that }t_1<_{t_1;t_2}t_2\\
614-
&\text{ and the causal pair of }t_1<_{t_1;t_2}t_2\text{ is induced by }s.
615-
\end{align*}
616-
\end{definition}
617-
%\input{old_ref}
618-
619-
\subsection{Interpreting inhibition on posets}
620-
621-
In interpreting our logic, we work with a set of posets in $\mathcal{S}$ and a set of events $\cup_{s\in\mathcal{S}} E_s$.
622-
623-
\begin{definition}[Refinement of an event in a poset]
624-
Let $e$ be an event in a decorated poset $s=(E,\redl{+},\redl{-},\labl)$.
625-
Define $\mathtt{Concret}(e\in s) = \mathtt{Concret}(e)$ for $\mathtt{Concret}:\underline{s}\to\{t_1,\cdots t_n\}$ a concretisation function.
626-
%We call such a graph $M$ a \emph{context of application} of $e$ in $s$.
627-
\end{definition}
628-
629-
\begin{definition}[Refinement based on negative influence]
630-
\label{def:ref_neg_infl}
631-
For two posets $s_1,s_2$ and two events $e_1\in s_1$ and $e_2\in s_2$ such that $\mathtt{Concret}(e_1\in s_1) = M_1\Rightarrow N_1$ and $\mathtt{Concret}(e_2\in s_2) = M_2\Rightarrow N_2$, define $\mathtt{Concret}(e_1\in s_1\redl{-} e_2\in s_2) = M$ for which the diagram below commutes:
632-
\[
633-
\begin{tikzpicture} %[scale=0.8]
634-
\node (o) at (0,-0.5) {\(O\)};
635-
\node (n) at (0,2) {\(M\)};
636-
\node (l1) at (-1,0) {\(L_1\)};
637-
\node (l2) at (1,0) {\(L_2\)};
638-
\node (n1) at (-1,1) {\(M_1\)};
639-
\node (n2) at (1,1) {\(M_2\)};
640-
\draw [->] (l1) -- (n1);
641-
\draw [->] (l2) -- (n2);
642-
\draw [->] (o) -- (l1);
643-
\draw [->] (o) -- (l2);
644-
\draw [->] (n1) -- (n);
645-
\draw [->] (n2) -- (n);
646-
\end{tikzpicture}
647-
\]
648-
where $\labl(e_1)\redl{-}_s\labl(e_2)$, for some cospan $s:L_1\remb O\lemb L_2$.
649-
\end{definition}

0 commit comments

Comments
 (0)