You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: notes/influence_stories.tex
+59-57Lines changed: 59 additions & 57 deletions
Original file line number
Diff line number
Diff line change
@@ -414,7 +414,65 @@ \subsection{From transition systems to posets}
414
414
\end{align*}
415
415
\end{example}
416
416
417
-
\subsection{Refinement of decorated posets}
417
+
\subsection{Interpreting inhibition on posets}
418
+
419
+
%In interpreting our logic, we work with a set of posets in $\mathcal{S}$ and a set of events $\cup_{s\in\mathcal{S}} E_s$.
420
+
421
+
\begin{definition}[Linear extensions of posets]
422
+
A linear extension, denoted $\underline{s}$, of a poset $s=(E,\tleq)$ is any total order that extends the partial order $\tleq$. We denote $\linear(s)$ the set of all possible linear extensions of $s$.
423
+
%% \[
424
+
%% (E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, e_1\leq e_2\implies e_1\seq e_2.
425
+
%% \]
426
+
A linear extension of a augmented poset $s=(E,\cover,\dashv)$ is any total order such that
427
+
\begin{align*}
428
+
(E,\seq)\in\linear(s) \iff\forall e_1,e_2\in E, &e_1\leq e_2\implies e_1\seq e_2\\
429
+
& e_1\dashv e_2\implies e_2\seq e_1.
430
+
\end{align*}
431
+
\end{definition}
432
+
433
+
\begin{definition}
434
+
Let $\underline s=(E,\seq\redl{+},\redl{-},\labl)$ be a linear extension of a decorated poset $s$. A \emph{concretisation} function $\mathtt{Concret}:E\leftrightarrow\{t_1,\cdots t_n\}$ is a bijection between events in $E$ and a set of transitions such that
435
+
\begin{align*}
436
+
e_1\redl{+}_s e_2 \iff& \mathtt{Concret}(e_1) = t_1, \mathtt{Concret}(e_1) = t_2, \text{ such that }t_1<_{t_1;t_2}t_2\\
437
+
&\text{ and the causal pair of }t_1<_{t_1;t_2}t_2\text{ is induced by }s.
438
+
\end{align*}
439
+
\end{definition}
440
+
441
+
442
+
\begin{definition}[Refinement of an event in a poset]
443
+
Let $e$ be an event in a decorated poset $s=(E,\redl{+},\redl{-},\labl)$.
444
+
Define $\mathtt{Concret}(e\in s) = \mathtt{Concret}(e)$ for $\mathtt{Concret}:\underline{s}\to\{t_1,\cdots t_n\}$ a concretisation function.
445
+
%We call such a graph $M$ a \emph{context of application} of $e$ in $s$.
446
+
\end{definition}
447
+
448
+
\begin{definition}[Refinement based on negative influence]
449
+
\label{def:ref_neg_infl}
450
+
For two posets $s_1,s_2$ and two events $e_1\in s_1$ and $e_2\in s_2$ such that $\mathtt{Concret}(e_1\in s_1) = M_1\Rightarrow N_1$ and $\mathtt{Concret}(e_2\in s_2) = M_2\Rightarrow N_2$, define $\mathtt{Concret}(e_1\in s_1\redl{-} e_2\in s_2) = M$ for which the diagram below commutes:
451
+
\[
452
+
\begin{tikzpicture} %[scale=0.8]
453
+
\node (o) at (0,-0.5) {\(O\)};
454
+
\node (n) at (0,2) {\(M\)};
455
+
\node (l1) at (-1,0) {\(L_1\)};
456
+
\node (l2) at (1,0) {\(L_2\)};
457
+
\node (n1) at (-1,1) {\(M_1\)};
458
+
\node (n2) at (1,1) {\(M_2\)};
459
+
\draw [->] (l1) -- (n1);
460
+
\draw [->] (l2) -- (n2);
461
+
\draw [->] (o) -- (l1);
462
+
\draw [->] (o) -- (l2);
463
+
\draw [->] (n1) -- (n);
464
+
\draw [->] (n2) -- (n);
465
+
\end{tikzpicture}
466
+
\]
467
+
where $\labl(e_1)\redl{-}_s\labl(e_2)$, for some cospan $s:L_1\remb O\lemb L_2$.
468
+
\end{definition}
469
+
470
+
\subsection{From posets to traces}
471
+
%\input{old_concret}
472
+
473
+
%\input{old_ref}
474
+
475
+
%\subsection{Refinement of decorated posets}
418
476
419
477
\begin{lemma}[Update of a decoration after a refinement]
420
478
\label{lem:update_dec}
@@ -578,17 +636,6 @@ \subsection{Refinement of decorated posets}
578
636
If $s$ is a valid decorated poset then for any two events $e_1,e_2$ in $s$, $s_{(e_1\otimes e_2)}$ is also a valid decorate poset.
579
637
\end{lemma}
580
638
581
-
\begin{definition}[Linear extensions of posets]
582
-
A linear extension, denoted $\underline{s}$, of a poset $s=(E,\tleq)$ is any total order that extends the partial order $\tleq$. We denote $\linear(s)$ the set of all possible linear extensions of $s$.
583
-
%% \[
584
-
%% (E,\seq)\in\linear(s) \iff \forall e_1,e_2\in E, e_1\leq e_2\implies e_1\seq e_2.
585
-
%% \]
586
-
A linear extension of a augmented poset $s=(E,\cover,\dashv)$ is any total order such that
587
-
\begin{align*}
588
-
(E,\seq)\in\linear(s) \iff\forall e_1,e_2\in E, &e_1\leq e_2\implies e_1\seq e_2\\
589
-
& e_1\dashv e_2\implies e_2\seq e_1.
590
-
\end{align*}
591
-
\end{definition}
592
639
593
640
\begin{definition}[Refinement of a poset]
594
641
\label{def:ref_poset}
@@ -602,48 +649,3 @@ \subsection{Refinement of decorated posets}
602
649
&\underline s\text{ otherwise.}\\
603
650
\end{align*}
604
651
\end{definition}
605
-
606
-
607
-
\subsection{From posets to traces}
608
-
%\input{old_concret}
609
-
610
-
\begin{definition}
611
-
Let $\underline s=(E,\seq\redl{+},\redl{-},\labl)$ be a linear extension of a decorated poset $s$. A \emph{concretisation} function $\mathtt{Concret}:E\leftrightarrow\{t_1,\cdots t_n\}$ is a bijection between events in $E$ and a set of transitions such that
612
-
\begin{align*}
613
-
e_1\redl{+}_s e_2 \iff& \mathtt{Concret}(e_1) = t_1, \mathtt{Concret}(e_1) = t_2, \text{ such that }t_1<_{t_1;t_2}t_2\\
614
-
&\text{ and the causal pair of }t_1<_{t_1;t_2}t_2\text{ is induced by }s.
615
-
\end{align*}
616
-
\end{definition}
617
-
%\input{old_ref}
618
-
619
-
\subsection{Interpreting inhibition on posets}
620
-
621
-
In interpreting our logic, we work with a set of posets in $\mathcal{S}$ and a set of events $\cup_{s\in\mathcal{S}} E_s$.
622
-
623
-
\begin{definition}[Refinement of an event in a poset]
624
-
Let $e$ be an event in a decorated poset $s=(E,\redl{+},\redl{-},\labl)$.
625
-
Define $\mathtt{Concret}(e\in s) = \mathtt{Concret}(e)$ for $\mathtt{Concret}:\underline{s}\to\{t_1,\cdots t_n\}$ a concretisation function.
626
-
%We call such a graph $M$ a \emph{context of application} of $e$ in $s$.
627
-
\end{definition}
628
-
629
-
\begin{definition}[Refinement based on negative influence]
630
-
\label{def:ref_neg_infl}
631
-
For two posets $s_1,s_2$ and two events $e_1\in s_1$ and $e_2\in s_2$ such that $\mathtt{Concret}(e_1\in s_1) = M_1\Rightarrow N_1$ and $\mathtt{Concret}(e_2\in s_2) = M_2\Rightarrow N_2$, define $\mathtt{Concret}(e_1\in s_1\redl{-} e_2\in s_2) = M$ for which the diagram below commutes:
632
-
\[
633
-
\begin{tikzpicture} %[scale=0.8]
634
-
\node (o) at (0,-0.5) {\(O\)};
635
-
\node (n) at (0,2) {\(M\)};
636
-
\node (l1) at (-1,0) {\(L_1\)};
637
-
\node (l2) at (1,0) {\(L_2\)};
638
-
\node (n1) at (-1,1) {\(M_1\)};
639
-
\node (n2) at (1,1) {\(M_2\)};
640
-
\draw [->] (l1) -- (n1);
641
-
\draw [->] (l2) -- (n2);
642
-
\draw [->] (o) -- (l1);
643
-
\draw [->] (o) -- (l2);
644
-
\draw [->] (n1) -- (n);
645
-
\draw [->] (n2) -- (n);
646
-
\end{tikzpicture}
647
-
\]
648
-
where $\labl(e_1)\redl{-}_s\labl(e_2)$, for some cospan $s:L_1\remb O\lemb L_2$.
0 commit comments