Skip to content

Commit 93ebcf0

Browse files
author
Ioana
committed
new
1 parent 177456a commit 93ebcf0

File tree

4 files changed

+362
-750
lines changed

4 files changed

+362
-750
lines changed

notes/graph_rewrite.tex

Lines changed: 80 additions & 51 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ \section{Transition systems for graph rewriting}
33
\subsection{Graph rewriting}
44

55
\begin{definition}[Category of simple graphs]
6-
We define the category of \emph{simple graphs} where
6+
We define the category of \emph{simple graphs} $\mathcal{G}$ where
77
\begin{itemize}
88
\item objects are graphs: $G = (V,E)$ with $V$ a set of nodes and $E$ a binary symmetric reflexive relation on nodes, representing the edges;
99
\item morphisms $h:G_1\to G_2$ are functions on nodes $h_V:V_1\to V_2$ that preserve edges: $(s,t)\in E_1\implies (h_V(s),h_V(t))\in E_2$. We denote $h_E$ the function on edges: $h_E(s,t) = (h_V(s), h_V(t))$.
@@ -103,51 +103,53 @@ \subsection{Graph rewriting}
103103
\subsection{Transition systems}
104104
\label{sec:ts}
105105

106-
\begin{definition}[Transition systems]
107-
\label{def:ts_nielsen}
108-
%\cite{NielsenRT92}
109-
A transition system is a structure $TS = (Q,E,T)$ where $Q$ is a set of states, $E$ is a set of events and $T\subseteq Q\times E\times Q$ is a set of labelled transitions. Let $q_{\text{init}}\in Q$ be a special state, called the \emph{initial} state. Moreover a transition system satisfies the following axioms:
110-
\begin{itemize}
111-
\item no redundant events: $\forall e\in E$, $\exists (s,e,s')\in T$;
112-
\item all states are reachable: $\forall q\in Q$, $\exists q_0,\cdots q_n \in Q$ and $\exists e_o,\cdots e_n\in E$ such that $q_{\text{init}} = q_0$, $q_n =q$ and $(q_i,e_i,q_{i+1}) \in T$.
113-
% \item no circles:$\forall (s,e,s')\in T$, $s\neq s'$;
114-
% \item each pair of states connected by a single transition: $\forall (s,e_1,s_1), (s,e_2,s_2)\in T$, $s_1=s_2\implies e_1=e_2$.
115-
\end{itemize}
116-
\end{definition}
106+
%% \begin{definition}[Transition systems]
107+
%% \label{def:ts_nielsen}
108+
%% %\cite{NielsenRT92}
109+
%% A transition system is a structure $TS = (Q,E,T)$ where $Q$ is a set of states, $E$ is a set of events and $T\subseteq Q\times E\times Q$ is a set of labelled transitions. Let $q_{\text{init}}\in Q$ be a special state, called the \emph{initial} state. Moreover a transition system satisfies the following axioms:
110+
%% \begin{itemize}
111+
%% \item no redundant events: $\forall e\in E$, $\exists (s,e,s')\in T$;
112+
%% \item all states are reachable: $\forall q\in Q$, $\exists q_0,\cdots q_n \in Q$ and $\exists e_o,\cdots e_n\in E$ such that $q_{\text{init}} = q_0$, $q_n =q$ and $(q_i,e_i,q_{i+1}) \in T$.
113+
%% % \item no circles:$\forall (s,e,s')\in T$, $s\neq s'$;
114+
%% % \item each pair of states connected by a single transition: $\forall (s,e_1,s_1), (s,e_2,s_2)\in T$, $s_1=s_2\implies e_1=e_2$.
115+
%% \end{itemize}
116+
%% \end{definition}
117117

118-
We denote $t:(s,e,s')$ a transition. Transitions can be composed $t_1;t_2$ if the source state of $t_2$ matches the destination state of $t_1$. A \emph{trace} $\theta$ is a sequence of composable transitions: $\theta=t_1;t_2;\cdots t_n$. Two traces $\theta:t_1;\cdots t_n$ and $\theta':t_1';\cdots t_n'$ can be composed if $t_n$ and $t_1'$ are composable: $\theta;\theta':t_1;\cdots t_n;t_1;\cdots t_n'$.
119118

120119
\begin{definition}[TS on graphs]
121-
A transition system on graphs $TS = (Q,R,E,T)$ consists of
120+
A transition system on graphs $TS = (Q,R,T)$ consists of
122121
\begin{itemize}
123-
\item a set of states $Q$, where each state is a simple graph;
122+
\item a set of states $Q\subseteq \mathcal{G}$, where each state is a simple graph;
124123
\item a set of rules or productions, $R$;
125-
\item a set of events $E$, where each event $e=(p:L\action R,G,m:L\emb G)$ is a triple consisting of a rule $p\in R$, a graph $G$ and a function $m$ that selects one matching $L\emb G$. For an event $e$, we define two functions $\labl(e) = p$ and $m(e) = L\emb G$.
126-
\item a set of labelled transition $T\subseteq Q\times E\times Q$, where each transition $M \overset{e}{\Rightarrow} N$ is a DPO rewriting step with the production $\labl(e) = p$ and the matching $m(e) = L\emb M$:
127-
\[
128-
\begin{tikzpicture} %[scale=0.8]
129-
\node (l) at (-1.5,0) {\(L\)};
130-
\node (r) at (0,0) {\(R\)};
131-
\node (m) at (-1.5,1.5) {\(M\)};
132-
\node (n) at (0,1.5) {\(N\)};
133-
\draw [->] (l) -- node [left,midway] {\(m(e)\)} (m);
134-
\draw [>=latex, ->] (l) -- (r);
135-
\draw [>=latex, ->] (m) -- (n);
136-
\draw [->] (r) -- (n);
137-
\end{tikzpicture}
138-
\]
139-
We sometimes write $M\overset{m(e),\labl(e)}{\Rightarrow} N$.
124+
% \item a set of events $E$, where each event $e=(p:L\action R,G,m:L\emb G)$ is a triple consisting of a rule $p\in R$, a graph $G$ and a function $m$ that selects one matching $L\emb G$. For an event $e$, we define two functions $\labl(e) = p$ and $m(e) = L\emb G$.
125+
\item a set of labelled transition $T\subseteq Q\times \text{hom}(\mathcal{G})\times R\times Q$, where each transition $M \overset{m,p}{\Rightarrow} N$ is a DPO rewriting step with the production $p\in R$, $p:L\lemb K\remb R$ and the matching $m:L\emb M$.
126+
%% \[
127+
%% \begin{tikzpicture} %[scale=0.8]
128+
%% \node (l) at (-1.5,0) {\(L\)};
129+
%% \node (r) at (0,0) {\(R\)};
130+
%% \node (m) at (-1.5,1.5) {\(M\)};
131+
%% \node (n) at (0,1.5) {\(N\)};
132+
%% \draw [->] (l) -- node [left,midway] {\(m(e)\)} (m);
133+
%% \draw [>=latex, ->] (l) -- (r);
134+
%% \draw [>=latex, ->] (m) -- (n);
135+
%% \draw [->] (r) -- (n);
136+
%% \end{tikzpicture}
137+
%% \]
138+
%We sometimes write $M\overset{m(e),\labl(e)}{\Rightarrow} N$.
140139
\end{itemize}
141-
Moreover $TS$ satisfy the axioms of~\autoref{def:ts_nielsen}.
140+
%Moreover $TS$ satisfy the axioms of~\autoref{def:ts_nielsen}.
142141
\end{definition}
143142

143+
%We denote $t:(s,e,s')$ a transition.
144+
Transitions can be composed $t_1;t_2$ if the source state of $t_2$ matches the destination state of $t_1$. A \emph{trace} $\theta$ is a sequence of composable transitions: $\theta=t_1;t_2;\cdots t_n$. Two traces $\theta:t_1;\cdots t_n$ and $\theta':t_1';\cdots t_n'$ can be composed if $t_n$ and $t_1'$ are composable: $\theta;\theta':t_1;\cdots t_n;t_1;\cdots t_n'$.
145+
144146
\begin{definition}[Independence relation on transitions~\cite{AlgebraicGR}]
145147
\label{def:indep}
146148
$~$
147149
\begin{description}
148150
\item[sequential independence]
149151
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
150-
$t_1 \Diamond_{\text{seq}} t_2$ iff there exists the morphism $i:R_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $g_1\circ j= m_1$:
152+
$t_1 \Diamond_{\text{seq}} t_2$ iff there exists the morphism $i:R_1\to D_2$ such that $i\circ f_2 = n_1$ and there exists the morphism $j:L_2\to D_1$ such that $j\circ g_1= m_2$:
151153
\[
152154
\begin{tikzpicture} %[scale=0.8]
153155
\node (r1) at (1.5,0) {\(R_1\)};
@@ -171,7 +173,7 @@ \subsection{Transition systems}
171173
\]
172174
\item[parallel independence]
173175
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
174-
$t_1 \Diamond_{\text{par}} t_2$ iff there exists the morphism $i:L_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$:
176+
$t_1 \Diamond_{\text{par}} t_2$ iff there exists the morphism $i:L_1\to D_2$ such that $i\circ f_2= n_1$ and there exists the morphism $j:L_2\to D_1$ such that $j\circ f_1= m_2$:
175177
\[
176178
\begin{tikzpicture} %[scale=0.8]
177179
\node (r1) at (1.5,0) {\(L_1\)};
@@ -207,40 +209,67 @@ \subsection{Transition systems}
207209

208210
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ be two parallel independent transitions. Let us denote $t_2/t_1:M_1\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1/t_2:M_2\overset{m_1',p_1}{\Rightarrow} M'$ the two transitions we obtained by~\autoref{church_rosser}.
209211

210-
\begin{definition}[Equivalence class on transitions and traces]
211-
We define an equivalence class on transitions, denoted $\congr$ as the least equivalence relation which satisfies $t_1\congr t_1/t_2$ and $t_2\congr t_2/t_1$, for any two transitions $t_1$ and $t_2$ parallel independent.
212+
\begin{definition}[Equivalence up to permutation on traces]
213+
Define an equivalence up to permutations on traces, denoted $\congr$, as the least equivalence relation satisfying $t_1;(t_2/t_1)\congr t_2;(t_1/t_2)$.
214+
\end{definition}
212215

213-
Define an equivalence up to permutations on traces, as the least equivalence relation satisfying $t_1;(t_2/t_1)\congr t_2;(t_1/t_2)$.
216+
\begin{definition}[Equivalence on transitions]
217+
Let $\sim$ be a binary relation on transitions such that for any two transitions $t_1\Diamond_{\text{par}} t_2$ and such that there exists $t_3$ and $t_4$ with $t_1;t_3\congr t_2;t_4$ then $t_1\sim t_4$ and $t_2\sim t_3$.
214218
\end{definition}
215219

216-
Note that, from~\autoref{church_rosser}, for two sequential independent transitions $t_1$ and $t_2$ we have that $t_1\congr t_1'$ and $t_2\congr t_2'$, where $t_1'$ and $t_2'$ are obtained by commutation.
220+
The following property shows that one can define the equivalence relation above using sequential independent transitions as well.
221+
222+
\begin{property}
223+
Let $\sim'$ be a binary relation on transitions such that if $t_1\Diamond_{\text{seq}} t_2$ and there exists $t_3$ and $t_4$ with $t_1;t_2\congr t_3;t_4$ then $t_1\sim' t_4$ and $t_2\sim' t_3$. Then for any transitions $t_i$, $i\in\{1,..,4\}$ such that $t_1;t_2\congr t_3;t_4$ we have that
224+
\begin{align*}
225+
t_1 \sim' t_4\text{ and }t_2\sim' t_3 \iff t_1 \sim t_4\text{ and }t_2\sim t_3
226+
\end{align*}
227+
\end{property}
228+
229+
%We define an equivalence class on transitions, denoted $\congr$ as the least equivalence relation which satisfies $t_1\congr t_1/t_2$ and $t_2\congr t_2/t_1$, for any two transitions $t_1$ and $t_2$ parallel independent.
230+
%Note that, from~\autoref{church_rosser}, for two sequential independent transitions $t_1$ and $t_2$ we have that $t_1\congr t_1'$ and $t_2\congr t_2'$, where $t_1'$ and $t_2'$ are obtained by commutation.
217231

218232
%We equip a graph transition system $(Q,R,E,T)$ with an irreflexive, symmetric relation on events $\Diamond\subseteq E\times E$, called independence, such that $e_1\Diamond e_1$ iff $e_1\Diamond_{\text{seq}} e_1$ or $e_1\Diamond_{\text{par}} e_1$.
219233

220-
\begin{definition}[Sequential dependence]
221-
\label{def:seq_dep}
222-
Transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent, denoted $t_1 < t_2$, if there exists no morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$.
234+
\begin{definition}[Dependence relation on transitions]
235+
\label{def:dep}
236+
\begin{description}
237+
\item[] $~$
238+
\item[sequential dependence]
239+
\label{def:seq_dep}
240+
Transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent, denoted $t_1 < t_2$, if there exists no morphism $j:L_2\to D_1$ such that $j\circ g_1= m_2$.
241+
242+
\item[parallel dependence]
243+
\label{def:inhibition}
244+
A transition $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ inhibits another transition $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$, denoted $t_1 \dashv t_2$, if there is no morphisms $j:L_2\to D_1$ such that $j\circ f_1= m_2$. The two transitions are parallel dependent if they are inhibiting each other.
245+
\end{description}
223246
\end{definition}
224247

225-
\autoref{def:seq_dep} implies that if $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent then there is no graph $M'\in Q$ such that there exists the transitions
248+
\autoref{def:dep}, \autoref{def:seq_dep} implies that if $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent then there is no graph $M'\in Q$ such that there exists the transitions
226249
$t_2':M\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1':M'\overset{m_1',p_1}{\Rightarrow} M_2$ with $t_1\Diamond_{\text{par}}t_2'$.
227250

228-
\begin{definition}[Parallel dependence]
229-
\label{def:inhibition}
230-
A transition $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ inhibits another transition $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$, denoted $t_1 \dashv t_2$, if there is no morphisms $j:L_2\to D_1$ such that $f_1\circ j= m_1$. The two transitions are parallel dependent if they are inhibiting each other.
231-
\end{definition}
232-
233-
From~\autoref{def:inhibition} we have that if $t_1 \dashv t_2$ then there is no graph $M'\in Q$ such that there exists the transitions $t_2':M_1\overset{m_2',p_2}{\Rightarrow} M'$ with $t_1\Diamond_{\text{seq}}t_2'$.
251+
From~\autoref{def:dep}, \autoref{def:inhibition} we have that if $t_1 \dashv t_2$ then there is no graph $M'\in Q$ such that there exists the transitions $t_2':M_1\overset{m_2',p_2}{\Rightarrow} M'$ with $t_1\Diamond_{\text{seq}}t_2'$.
234252

235253
\begin{lemma}
236-
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2: M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequential independent, then either $t_1 < t_2$ or $t_2\dashv t_1$ (or both).
254+
\label{lem:not_seq_ind}
255+
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2: M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequential independent, then either (i) $t_1 < t_2$ or (ii) there exists a morphism $j:L_2 \to M$ such that $j\circ g_1 = m_2$ and therefore there exists $M_2'$ and $t_2':M\overset{j\circ f_1,p_2}{\Rightarrow} M_2'$ with $t_2'\dashv t_1$.
237256
\end{lemma}
238257
\begin{proof}
239-
If $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequentially independent, from~\autoref{def:indep}, it follows that either (i) there is no morphism $j:L_2\to D_1$ such that $g_1\circ j= m_1$ and then $(p_1,M,m_1) < (p_2,M_1,m_2)$ or (ii)
240-
there is no morphism $i:R_1\to D_2$ such that $f_2\circ i= m_2$. Suppose for the latter case, that there is $j:L_2\to D_1$ such that $g_1\circ j= m_1$. It implies, from~\autoref{church_rosser} that there exists $M'\in Q$ and $M\overset{m_2',p_2}{\Rightarrow} M'$ and that $(p_1,M,m_1)$ is not parallel independent of $(p_2,M,m_2')$. From the definition of parallel independence the only possibility is that there is no morphism $i:L_1\to D_2$ such that $f_2\circ i= m_2$. \autoref{def:inhibition} implies then that $(p_2,M,m_2)\dashv(p_1,M,m_1)$.
258+
If $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequentially independent, from~\autoref{def:indep}, it follows that either (i) there is no morphism $j:L_2\to D_1$ such that $j\circ g_1= m_2$ and then $t_1 < t_2$ or
259+
(ii) there is no morphism $i:R_1\to D_2$ such that $i\circ f_2= n_1$. In the latter case, there is $j:L_2\to D_1$ such that $j\circ g_1= m_2$. It implies, from~\autoref{church_rosser} that there exists $M'\in Q$ and $t_2':M\overset{m_2',p_2}{\Rightarrow} M'$ and that $t_1$ is not parallel independent of $t_2'$. From the definition of parallel independence the only possibility is that there is no morphism $i:L_1\to D_2$ such that $i\circ f_2= n_1$. \autoref{def:inhibition} implies then that $t_2'\dashv t_1$.
241260
\end{proof}
242261

262+
\begin{definition}[Equivalence on transitions]
263+
Let $t_1:M_1\overset{m_1,p_1}{\Rightarrow} M_2$ and $t_2:M_2\overset{m_2,p_2}{\Rightarrow} M_3$ be two sequential transitions such that $\neg(t_1<t_2)$ and $\neg(t_1\Diamond_{\text{seq}}t_2)$. Denote $t_2|t_1$ the transition obtained by~\autoref{lem:not_seq_ind}.
264+
265+
Let $\sim_{\dashv}$ be a binary relation on transitions such that $t_2\sim_{\dashv}t_2|t_1$.
266+
267+
The equivalence relation on transitions, $\simeq$ is defined as the symmetric, reflexive and transitive closure of $\sim\cup\sim_{\dashv}$.
268+
\end{definition}
269+
243270
\begin{lemma}
244271
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ are not parallel independent then either $t_1\dashv t_2$ or $t_2\dashv t_1$ (or both).
245272
\end{lemma}
246-
The proof is similar to the one above.
273+
\begin{proof}
274+
It follows from~\autoref{def:indep}.
275+
\end{proof}

notes/influence.tex

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ \subsection{Influence}
7474

7575
Let the cospan $R_1\lemb M\remb L_2$ be in the multisum of $R_1$ and $L_2$, from which we get the span $R_1\leftarrow O\rightarrow L_2$ as pullback.
7676

77-
There is a \emph{positive influence} between the two rules induced by $O$ and denoted $r_1\redl{+}_o r_2$ if the pullback of the cospan $D_1\lemb R_1\remb O$, denoted $P$, and $O$ is not an iso. In other words, $O$ is not contained in $P$.
77+
There is a \emph{positive influence} between the two rules induced by the cospan $s:R_1\remb O\lemb L_2$ and denoted $r_1\redl{+}_s r_2$ if the pullback of the cospan $D_1\lemb R_1\remb O$, denoted $P$, and $O$ is not an iso. In other words, $O$ is not contained in $P$.
7878
\[
7979
\begin{tikzpicture} %[scale=0.8]
8080
\node (p) at (0,-1) {\(P\)};
@@ -95,16 +95,16 @@ \subsection{Influence}
9595
\end{tikzpicture}
9696
\]
9797

98-
Define $r_1\redl{+} r_2$ if there exists $O$ such that $r_1\redl{+}_o r_2$.
98+
Define $r_1\redl{+} r_2$ if there exists $s$ such that $r_1\redl{+}_s r_2$.
9999
\end{definition}
100100

101-
Similarly, define the negative influence $r_1\redl{-}_O r_2$ if there exists the span $L_1{\remb} O {\lemb} L_2$ and there is no iso between the pullback of the cospan $D_1\lemb L_1\remb O$ and $O$.
101+
Similarly, define the negative influence $r_1\redl{-}_s r_2$ if there exists the span $s:L_1{\remb} O {\lemb} L_2$ and there is no iso between the pullback of the cospan $D_1\lemb L_1\remb O$ and $O$.
102102

103103
\begin{definition}[Causal pair]
104104
\label{def:causal_pair}
105105
Let $p_1:L_1{\remb} D_1 {\lemb} R_1$ and $p_2:L_2{\remb} D_2 {\lemb} R_2$ be two rules.
106106

107-
A pair $P_1\overset{m_1,p_1}{\Rightarrow} M\overset{m_2,p_2}{\Rightarrow} P_2$ is a \emph{causal pair} if the cospan $R_1{\remb}M{\lemb}L_2$ is in the multisum of $R_1$ and $L_2$ and $p_1\redl{+}_O p_2$, where $O$ is the pullback of the cospan $R_1{\remb}M{\lemb}L_2$:
107+
A pair $P_1\overset{m_1,p_1}{\Rightarrow} M\overset{m_2,p_2}{\Rightarrow} P_2$ is a \emph{causal pair} if the cospan $R_1{\remb}M{\lemb}L_2$ is in the multisum of $R_1$ and $L_2$ and $p_1\redl{+}_s p_2$, where $s$ is the pullback of the cospan $R_1{\remb}M{\lemb}L_2$:
108108
\[
109109
\begin{tikzpicture} %[scale=0.8]
110110
\node (o) at (1,0) {\(O\)};
@@ -210,7 +210,7 @@ \subsection{Influence}
210210
\begin{definition}[Inhibiting pair]
211211
Let $p_1:L_1{\remb} D_1 {\lemb} R_1$ and $p_2:L_2{\remb} D_2 {\lemb} R_2$ be two rules.
212212

213-
A pair $P_1\overset{m_1,p_1}{\Leftarrow} M\overset{m_2,p_2}{\Rightarrow} P_2$ is an \emph{inhibiting pair} if the cospan $L_1{\remb}M{\lemb}L_2$ is in the multisum of $L_1$ and $L_2$ and $p_1\redl{-}_O p_2$, where $O$ is the pullback of the cospan $L_1{\remb}M{\lemb}L_2$:
213+
A pair $P_1\overset{m_1,p_1}{\Leftarrow} M\overset{m_2,p_2}{\Rightarrow} P_2$ is an \emph{inhibiting pair} if the cospan $L_1{\remb}M{\lemb}L_2$ is in the multisum of $L_1$ and $L_2$ and $p_1\redl{-}_s p_2$, where $s$ is the pullback of the cospan $L_1{\remb}M{\lemb}L_2$:
214214
\[
215215
\begin{tikzpicture} %[scale=0.8]
216216
\node (o) at (1,0) {\(O\)};

0 commit comments

Comments
 (0)