You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: notes/graph_rewrite.tex
+26-17Lines changed: 26 additions & 17 deletions
Original file line number
Diff line number
Diff line change
@@ -8,6 +8,7 @@ \subsection{Graph rewriting}
8
8
\item objects are graphs: $G = (V,E)$ with $V$ a set of nodes and $E$ a binary symmetric reflexive relation on nodes, representing the edges;
9
9
\item morphisms $h:G_1\to G_2$ are functions on nodes $h_V:V_1\to V_2$ that preserve edges: $(s,t)\in E_1\implies (h_V(s),h_V(t))\in E_2$. We denote $h_E$ the function on edges: $h_E(s,t) = (h_V(s), h_V(t))$.
\begin{definition}[Independence relation on transitions~\cite{AlgebraicGR}]
144
145
\label{def:indep}
145
146
$~$
146
147
\begin{description}
147
148
\item[sequential independence]
148
-
Let $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
149
-
$(p_1,M,m_1)\Diamond_{\text{seq}} (p_2,M_1,m_2)$ iff there exists the morphism $i:R_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $g_1\circ j= m_1$:
149
+
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
150
+
$t_1\Diamond_{\text{seq}} t_2$ iff there exists the morphism $i:R_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $g_1\circ j= m_1$:
Let $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
173
-
$(p_1,M,m_1)\Diamond_{\text{par}} (p_2,M,m_2)$ iff there exists the morphism $i:L_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$:
173
+
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ be two transitions.
174
+
$t_1\Diamond_{\text{par}} t_2$ iff there exists the morphism $i:L_1\to D_2$ such that $f_2\circ i= m_2$ and there exists the morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$:
%We call such a TS an \emph{asynchronous} transition system~\cite{Mukund93}.
198
199
\end{definition}
199
200
200
-
\begin{lemma}[Local Church Rosser Theorem for GT systems\cite{AlgebraicGR}]
201
+
\begin{lemma}[Local Church Rosser Theorem~\cite{AlgebraicGR}]
201
202
\label{church_rosser}
202
-
If two transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequentially independent, there exists $M'\in Q$ and two transitions $M\overset{m_2',p_2}{\Rightarrow} M'$ and $M'\overset{m_1',p_1}{\Rightarrow} M_2$. If two transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M\overset{m_2,p_2}{\Rightarrow} M_2$ are parallel independent, then there exists $M'\in Q$ and two transitions $M_1\overset{m_2',p_2}{\Rightarrow} M'$ and $M_2\overset{m_1',p_1}{\Rightarrow} M'$.
203
+
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequentially independent, there exists $M'\in Q$ and two transitions $t_2':M\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1':M'\overset{m_1',p_1}{\Rightarrow} M_2$. Moreover, $t_1$ and $t_2'$ are parallel independent.
204
+
205
+
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ are parallel independent, then there exists $M'\in Q$ and two transitions $t_2':M_1\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1':M_2\overset{m_1',p_1}{\Rightarrow} M'$. Moreover, $t_1$ and $t_2'$ (and $t_2$, $t_1'$) are sequential independent.
203
206
\end{lemma}
204
207
205
-
We equip a graph transition system $(Q,R,E,T)$ with an irreflexive, symmetric relation on events $\Diamond\subseteq E\times E$, called independence, such that $e_1\Diamond e_1$ iff $e_1\Diamond_{\text{seq}} e_1$ or $e_1\Diamond_{\text{par}} e_1$.
208
+
Let $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ be two parallel independent transitions. Let us denote $t_2/t_1:M_1\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1/t_2:M_2\overset{m_1',p_1}{\Rightarrow} M'$ the two transitions we obtained by~\autoref{church_rosser}.
209
+
210
+
\begin{definition}[Equivalence class on transitions]
211
+
We define an equivalence class on transitions, denoted $\congr$ as the least equivalence relation which satisfies $t_1\congr t_1/t_2$ and $t_2\congr t_2/t_1$, for any two transitions $t_1$ and $t_2$ parallel independent.
212
+
\end{definition}
213
+
214
+
Note that, from~\autoref{church_rosser}, for two sequential independent transitions $t_1$ and $t_2$ we have that $t_1\congr t_1'$ and $t_2\congr t_2'$, where $t_1'$ and $t_2'$ are obtained by commutation.
215
+
216
+
%We equip a graph transition system $(Q,R,E,T)$ with an irreflexive, symmetric relation on events $\Diamond\subseteq E\times E$, called independence, such that $e_1\Diamond e_1$ iff $e_1\Diamond_{\text{seq}} e_1$ or $e_1\Diamond_{\text{par}} e_1$.
206
217
207
218
\begin{definition}[Sequential dependence]
208
219
\label{def:seq_dep}
209
-
Transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependentif there exists no morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$. We denote $(p_1,M,m_1) < (p_2,M_1,m_2)$.
220
+
Transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent, denoted $t_1 < t_2$, if there exists no morphism $j:L_2\to D_1$ such that $f_1\circ j= m_1$.
210
221
\end{definition}
211
222
212
-
\autoref{def:seq_dep} implies that if $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent then ther is no graph $M'\in Q$ such that $M\overset{m_2',p_2}{\Rightarrow} M'$ and $M'\overset{m_1',p_1}{\Rightarrow} M_2$ and such that $(p_1,M,m_1)\Diamond_{\text{par}}(p_2,M,m_2')$.
223
+
\autoref{def:seq_dep} implies that if $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are sequential dependent then there is no graph $M'\in Q$ such that there exists the transitions
224
+
$t_2':M\overset{m_2',p_2}{\Rightarrow} M'$ and $t_1':M'\overset{m_1',p_1}{\Rightarrow} M_2$ with $t_1\Diamond_{\text{par}}t_2'$.
213
225
214
226
\begin{definition}[Parallel dependence]
215
227
\label{def:inhibition}
216
-
A transition $M\overset{m_1,p_1}{\Rightarrow} M_1$ inhibits another transition $M\overset{m_2,p_2}{\Rightarrow} M_2$ if there is no morphisms $j:L_2\to D_1$ such that $f_1\circ j= m_1$. We denote $(p_1,M,m_1) \dashv (p_2,M_1,m_2)$.
217
-
The two transitions are parallel dependent if they are inhibiting each other.
218
-
219
-
% Define $\dashv\subseteq E \times E$ a relation on events such that whenever $e_1\dashv e_2$ there exists two transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M\overset{m_2,p_2}{\Rightarrow} M_2$ for which %i.e. $m_{e_2}(M_1) = \emptyset$, where $\labl(e_1)=p_1$, $m_{e_1}(M) = m_1$ and $\labl(e_2)=p_2$, $m_{e_2}(M) = m_2$.
228
+
A transition $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ inhibits another transition $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$, denoted $t_1\dashv t_2$, if there is no morphisms $j:L_2\to D_1$ such that $f_1\circ j= m_1$. The two transitions are parallel dependent if they are inhibiting each other.
220
229
\end{definition}
221
230
222
-
From~\autoref{def:inhibition} we have that if $(p_1,M,m_1)\dashv(p_2,M_1,m_2)$ then there is no graph $M'\in Q$ such that $M_1\overset{m_2',p_2}{\Rightarrow} M'$and such that $(p_1,M,m_1)\Diamond_{\text{seq}}(p_2,M_1,m_2')$.
231
+
From~\autoref{def:inhibition} we have that if $t_1\dashvt_2$ then there is no graph $M'\in Q$ such that there exists the transitions $t_2':M_1\overset{m_2',p_2}{\Rightarrow} M'$with $t_1\Diamond_{\text{seq}}t_2'$.
223
232
224
233
\begin{lemma}
225
-
If two transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequentially independent, then either $(p_1,M,m_1) < (p_2,M_1,m_2)$ or $(p_2,M,m_2)\dashv(p_1,M,m_1)$ (or both).
234
+
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2: M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequential independent, then either $t_1 < t_2$ or $t_2\dashv t_1$ (or both).
226
235
\end{lemma}
227
236
\begin{proof}
228
237
If $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M_1\overset{m_2,p_2}{\Rightarrow} M_2$ are not sequentially independent, from~\autoref{def:indep}, it follows that either (i) there is no morphism $j:L_2\to D_1$ such that $g_1\circ j= m_1$ and then $(p_1,M,m_1) < (p_2,M_1,m_2)$ or (ii)
229
238
there is no morphism $i:R_1\to D_2$ such that $f_2\circ i= m_2$. Suppose for the latter case, that there is $j:L_2\to D_1$ such that $g_1\circ j= m_1$. It implies, from~\autoref{church_rosser} that there exists $M'\in Q$ and $M\overset{m_2',p_2}{\Rightarrow} M'$ and that $(p_1,M,m_1)$ is not parallel independent of $(p_2,M,m_2')$. From the definition of parallel independence the only possibility is that there is no morphism $i:L_1\to D_2$ such that $f_2\circ i= m_2$. \autoref{def:inhibition} implies then that $(p_2,M,m_2)\dashv(p_1,M,m_1)$.
230
239
\end{proof}
231
240
232
241
\begin{lemma}
233
-
If two transitions $M\overset{m_1,p_1}{\Rightarrow} M_1$ and $M\overset{m_2,p_2}{\Rightarrow} M_2$ are not parallel independent then either $(p_1,M,m_1)\dashv(p_2,M,m_2)$ or $(p_2,M,m_2)\dashv(p_1,M,m_1)$ (or both).
242
+
If two transitions $t_1:M\overset{m_1,p_1}{\Rightarrow} M_1$ and $t_2:M\overset{m_2,p_2}{\Rightarrow} M_2$ are not parallel independent then either $t_1\dashv t_2$ or $t_2\dashv t_1$ (or both).
0 commit comments