Skip to content

Commit 67fa358

Browse files
author
Ioana
committed
notes
1 parent 0e62531 commit 67fa358

File tree

1 file changed

+46
-2
lines changed

1 file changed

+46
-2
lines changed

notes/influence_stories.tex

Lines changed: 46 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -552,8 +552,52 @@ \subsection{From posets to traces}
552552

553553
So far, we have a trace $M_2\Rightarrow N_2\cdots M_k\Rightarrow N_2\cdots M_n\Rightarrow N_n$ corresponding to the chain $e_2\prec e'\cdots e_k\prec e''\prec\cdots e_n$ and a transition $P_1\Rightarrow M_k$. The last step consists in "swaping" the transition $P_1\Rightarrow M_k$ at the beginning of the trace, to obtain a trace $M_1\Rightarrow M_2\Rightarrow N_2\cdots M_n\Rightarrow N_n$.
554554

555-
From~\autoref{eq:e3}, for all events $e_i$ between $e_2$ and $e_k$ we have that $e_1\not\sqsubset e_i$.
556-
Therefore we have the transitions $M_{k-1}\Rightarrow M_k\Rightarrow P_1$ that are sequential independent.
555+
We proceed by induction on the trace $M_2\Rightarrow N_2\cdots M_k\Rightarrow N_2\cdots M_n\Rightarrow N_n$.
556+
Let us consider one step of swapping: let $M_j\overset{e_j}{\Rightarrow} M_{j+1}$ and $P_j\overset{e_1}{\Rightarrow}M_{j+1}$ where $2\leq j\leq k-1$. We consider the following cases:
557+
558+
\begin{itemize}
559+
\item {\bf both events have a common successor $\mathbf{e_j\sqsubset e_{j+1}}$ and $\mathbf{e_1\sqsubset e_{j+1}}$.} Note that from~\autoref{eq:e3} this case is only possible if $j+1=k$.
560+
561+
\item {\bf events have different successors $\mathbf{e_j\sqsubset e_i}$ with $\mathbf{i\neq k}$.}
562+
We can rewrite the transitions $M_j\overset{e_j}{\Rightarrow} M_{j+1}\overset{e_1^{-1}}{\Rightarrow} P_j$, as productions are reversible. We distinguish again between two cases. In the diagram below:
563+
\[
564+
\begin{tikzpicture} %[scale=0.8]
565+
\node (r1) at (1.5,0) {\(R_j\)};
566+
\node (m1) at (2,1.5) {\(M_{j+1}\)};
567+
\node (l2) at (2.5,0) {\(L_1\)};
568+
\node (d1) at (0,1.5) {\(D_j\)};
569+
\node (k1) at (0,0) {\(K_j\)};
570+
\node (d2) at (4,1.5) {\(D_j'\)};
571+
\node (k2) at (4,0) {\(K_1\)};
572+
\node (o) at (2,-1) {\(O\)};
573+
\node (p) at (1,-2) {\(P\)};
574+
\draw [->] (k1) -- (r1);
575+
\draw [->] (k2) -- (l2);
576+
\draw [->] (k1) -- node [left,midway] {\(k_j\)} (d1);
577+
\draw [->] (k2) -- (d2);
578+
\draw [->] (d1) -- node [above,midway] {\(g_j\)} (m1);
579+
\draw [->] (d2) -- (m1);
580+
\draw [->] (l2) -- node [right,midway] {\(m_1'\)} (m1);
581+
\draw [->] (r1) -- (m1);
582+
\draw [dotted,->] (l2) -- node [above,midway] {\(j\)} (d1);
583+
\draw [->] (p) -- (k1);
584+
\draw [->] (p) -- (o);
585+
\draw [->] (o) -- (r1);
586+
\draw [->] (o) -- node [right,midway] {$o$} (l2);
587+
\end{tikzpicture}
588+
\]
589+
first suppose that there is a morphism $j:R_1\to D_j$ such that the diagram commutes. Then we can rewrite $M_j$ using the production of $e_1^{-1}$ and obtain the transition $M_j\overset{e_1^{-1}}{\Rightarrow}P_{j+1}$. We reverse it again and obtain $P_{j+1}\overset{e_1}{\Rightarrow} M_j$. Then the induction continues with the transitions $M_{j-1}\overset{e_{j-1}}{\Rightarrow} M_{j}$ and $P_{j+1}\overset{e_1}{\Rightarrow} M_j$.
590+
591+
The second case is when there is no such morphism. We will show that this case is not possible. To do this we have to reason by induction
592+
593+
If there is no morphism $j$ then there exists $O$ the pullback of $R_j\lemb M_{j+1}\remb L_1$ and $P$ the pullback of $K_j\lemb R_j\remb O$ such that the morphism $P\to O$ is not an iso.
594+
595+
We also have the transition $M_{j+1}\overset{e_{j+1}}{\Rightarrow} M_{j+2}$. If
596+
597+
598+
599+
600+
\end{itemize}
557601

558602

559603
The construction of~\autoref{lemm:linear_to_trace} is minimal w.r.t. the choice of decoration and linear extension, in the sense that each graph in the construction is the result of a pushout.

0 commit comments

Comments
 (0)