Skip to content

Commit 4108419

Browse files
author
Ioana
committed
nana
1 parent 0337b4f commit 4108419

File tree

4 files changed

+231
-145
lines changed

4 files changed

+231
-145
lines changed

notes/influence.tex

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -99,4 +99,13 @@ \subsection{Influence}
9999

100100
Similarly, define the negative influence $r_1\redl{-}_{\spa} r_2$ if there exists the span $\spa:L_1{\remb} O {\lemb} L_2$ and there is no iso between the pullback of the cospan $D_1\lemb L_1\remb O$ and $O$.
101101

102+
\begin{property}
103+
Let the cospan $G_1\lemb M\remb G_2$ be in the multisum of $G_1$ and $G_2$, and let the span $G_1\remb O\lemb G_2$ be its pullback. Then $G_1\lemb M\remb G_2$ is the pushout of $G_1\remb O\lemb G_2$.
104+
\end{property}
105+
\begin{proof}
106+
Suffices to show that there exists no cospan $G_1\lemb M_k\remb G_2$ be in the multisum of $G_1$ and $G_2$, such that $G_1\remb O\lemb G_2$ is its pullback.
107+
\end{proof}
108+
109+
The property allows one to derive the influence between two rules using the multisum, but then to forget the multisum and only keep the spans $\spa$ in the influence $r_1\redl{+}_{\spa} r_2$.
110+
102111
We say that a span $\spa:G\remb O\lemb H$ is empty if $O\iso\varepsilon$. For two spans $\spa_1 = G\remb O_1\lemb H$ and $\spa_2 = G\remb O_1\lemb H$ we write $\spa_1\subseteq \spa_2$ whenever there exists an mono $O_1\emb O_2$ that commutes.

notes/macros.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -152,6 +152,7 @@
152152

153153
%Kappa
154154
\DeclareMathOperator{\type}{type}
155+
\DeclareMathOperator{\ntype}{ntype}
155156
\DeclareMathOperator{\site}{site}
156157
\DeclareMathOperator{\free}{free}
157158
\DeclareMathOperator{\sfree}{\ensuremath{\dashv}}

0 commit comments

Comments
 (0)