Skip to content

Commit 0337b4f

Browse files
author
Ioana
committed
backup on site graphs
1 parent f08e8b8 commit 0337b4f

File tree

4 files changed

+69
-13
lines changed

4 files changed

+69
-13
lines changed

notes/influence_stories.tex

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -323,6 +323,7 @@ \subsection{From transition systems to posets}
323323
\end{example}
324324

325325
\subsection{From posets to traces}
326+
\label{sec:refinement}
326327

327328
\begin{definition}[Refinement of an event in a trace]
328329
Let $E$ be a set of events and let $\theta$ be a trace. A refinement function is a bijection between events and transitions such that
@@ -385,6 +386,7 @@ \subsection{From posets to traces}
385386
where $\mathsf{decorate}$ returns a decoration of $s$ as in~\autoref{def:decorate_poset}, $\mathsf{decoration\_of\_trace}$ is an abstraction of a trace to its decorated poset, defined in the~\autoref{prop:constraints_poset}, $\mathsf{valid}$ is from~\autoref{def:constraints_poset} and lastly, $\mathsf{refine}$ is a function that extends a trace and a refinement to the new event $e$. We provide more details for $\mathsf{refine}$ in the appendix. Also in the appendix, we show that at each call of $\mathsf{concretise}$, the concretisations obtained so far are correct w.r.t.~\autoref{def:concret}.
386387

387388
\subsection{Interpreting inhibition on posets}
389+
\label{sec:inhibition}
388390

389391
\begin{definition}[Refinement based on negative influence]
390392
\label{def:ref_neg_infl}

notes/macros.tex

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -190,6 +190,7 @@
190190
\newcommand{\action}{\ensuremath{\rightarrowRHD}}
191191

192192
\usetikzlibrary{arrows, decorations.markings}
193+
\usetikzlibrary{arrows.meta}
193194

194195
\tikzstyle{vecArrow} = [thick, decoration={markings,mark=at position
195196
1 with {\arrow[semithick]{open triangle 60}}},

notes/site_graphs.tex

Lines changed: 62 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ \subsection{The category of site-graphs}
2525
Denote $\varepsilon$ the empty $\Sigma$-graph.
2626
\end{definition}
2727

28-
\begin{definition}[Morphisms]
28+
\begin{definition}[Morphisms on site-graphs]
2929
\label{def:site_morph}
3030
A morphism $h:G\to H$ is a total function on agents $h:\ag_G\to\ag_H$ such that
3131
\begin{itemize}
@@ -53,7 +53,7 @@ \subsection{The category of site-graphs}
5353
\end{definition}
5454

5555
\begin{lemma}
56-
Site-graphs and morphisms form a category.
56+
Site-graphs and their morphisms form a category.
5757
\end{lemma}
5858
\begin{proof}
5959
The category of site graphs has as objects the site graphs of~\autoref{def:site_graphs} and arrows are the morphisms of~\autoref{def:site_morph}.
@@ -70,7 +70,7 @@ \subsection{The category of site-graphs}
7070
The axioms of associativity and identity law easily hold.
7171
\end{proof}
7272

73-
\begin{definition}[Rules]
73+
\begin{definition}[Kappa rules]
7474
\label{def:rule_site}
7575
A rule is a span $L\overset{h}{\remb} D \overset{g}{\lemb} R$ such that $h$ and $g$ are monos on site graphs and the following hold
7676
\begin{itemize}
@@ -158,18 +158,71 @@ \subsection{The category of site-graphs}
158158
Suppose that there is a conflict in $N$ due to the property sets. For example, let $(a,i)\in p{k,R}$, $(a,i)\in p{k',D}$ and $k\neq k'$. We can reach a contradiction by deriving that $(a,i)\in p{k'',L}$ from \autoref{def:rule_site}.
159159

160160
We have that $N$ is the pushout from the first item of our proof.
161-
\end{enumerate}
162-
\end{proof}
161+
\end{enumerate}
162+
\end{proof}
163+
164+
%In~\autoref{def:pos_infl} we defined influence between rules in the category of simple graphs. We adapt the definition to site graphs, by
165+
166+
167+
%% \begin{definition}[Low and medium res influence]
168+
%% Let $r_1:L_1{\remb} D_1 {\lemb} R_1$ and $r_2:L_2{\remb} D_2 {\lemb} R_2$ be two rules.
169+
%% Let the cospan $R_1\lemb M\remb L_2$ be in the multisum of $R_1$ and $L_2$, defined on simple graphs, from which we get the span $R_1\remb O\lemb L_2$ as pullback, such that
170+
%% If the graph $O$ is a site graph then $r_1\redl{+} r_2$
171+
172+
173+
%% \end{definition}
163174

164175
%\input{influence_kappa.tex}
165-
Results form~\autoref{sec:ts} hold on site graphs as well with one inconvience. As the pushout of two site graphs is not always a site graphs we have to ensure that whenever we compose transition as in~\autoref{def:concret} we do obtain site graphs. The problem occurs whenever we have two events $e_1$ and $e_2$ for which there is a decoration $R_1\remb O\lemb L_2$ but there is a conflict in the pushout.
166-
The following lemma ensures that for any two such events, there is an intermediate event, occuring between $e_1$ and $e_2$, that "resolves" the conflict.
176+
Results form~\autoref{sec:ts} hold on site graphs. However, as the pushout of two site graphs is not always a site graphs we have to ensure that whenever we compose transition as in~\autoref{sec:refinement} and~\autoref{sec:inhibition} we do obtain site graphs. Let us first consider the issue with the concretisation function.
177+
178+
The problem occurs whenever we have two events $e_1$ and $e_2$ for which there is a decoration $R_1\remb O\lemb L_2$ but for which the graph obtained in the pushout is not a site graph. Let us first refine low res precedence to distinguish between the case where the pushout of a decoration yields a site graph and the case where it does not.
179+
180+
\begin{definition}[Medium res dependence]
181+
Let $t_1:M_1\overset{m_1,p_1}{\Rightarrow} N_1$ and $t_2:M_2\overset{m_2,p_2}{\Rightarrow} N_2$ be two transitions in a trace $\theta:t_1;t_1':t_2';\cdots t_n';t_2$ and let $p_1:L_1{\remb} D_1 {\lemb} R_1$ and $p_2:L_2{\remb} D_2 {\lemb} R_2$ be two corresponding rules. The morphism $N_1\pmorph M_2$ is the composition of $\spo(t_1')\circ\dots\spo(t_n')$.
182+
183+
If there exists $\spa:R_1\remb O\lemb L_2$ such that $p_1\redl{+}_{\spa} p_2$ and such that the diagram commutes
184+
185+
Let the span $\spa:R_1\remb O\lemb L_2$ be the pullback of the cospan $R_1{\lemb}M{\remb}L_2$ in the multisum of $R_1$ and $L_2$ such that $p_1\redl{+}_{\spa} p_2$. If there are no morphisms $M\lemb M_1$ or $M\lemb M_2$ such that the diagram commutes
186+
\[
187+
\begin{tikzpicture} %[scale=0.8]
188+
\node (o) at (1,0) {\(O\)};
189+
\node (m) at (1,2) {\(M\)};
190+
\node (m1) at (-2,3) {\(M_1\)};
191+
\node (n1) at (0,3) {\(N_1\)};
192+
\node (n2) at (4,3) {\(N_2\)};
193+
\node (m2) at (2,3) {\(M_2\)};
194+
\node (r1) at (0,1) {\(R_1\)};
195+
\node (l1) at (-2,1) {\(L_1\)};
196+
\node (l2) at (2,1) {\(L_2\)};
197+
\node (r2) at (4,1) {\(R_2\)};
198+
\draw [->] (o) -- (r1);
199+
\draw [->] (o) -- (l2);
200+
\draw [->] (r1) -- (m);
201+
\draw [->] (r1) -- (n1);
202+
\draw [->] (l2) -- (m);
203+
\draw [->] (l2) -- (m2);
204+
%% \draw [dotted,->] (m) -- (n1);
205+
%% \draw [dotted,->] (m) -- (m2);
206+
\draw [-{Stealth[left]}] (n1) -- (m2);
207+
\draw [->] (l1) -- (m1);
208+
\draw [->] (r2) -- (n2);
209+
\draw [vecArrow] (m1) -- node [above,midway] {$m_1,p_1$} (n1);
210+
\draw [vecArrow] (m2) -- node [above,midway] {$m_2,p_2$} (n2);
211+
\draw [vecArrow] (l2) -- (r2);
212+
\draw [vecArrow] (l1) -- (r1);
213+
\end{tikzpicture}
214+
\]
215+
then $t_2$ is medium res dependent on $t_1$, denoted $t_1\ll t_2$.
216+
\end{definition}
217+
Note that in simple grahs medium res and low res dependence coincide. In site graphs $t_1\ll t_2 \implies t_1 \prec t_2$ but not the reverse.
218+
219+
The following lemma ensures that for any two such events, for which the decoration leads to a medium res precedence there exists an event occuring between the two that "resolves" the conflict.
167220

168221
\begin{lemma}
169-
Let $\theta$ be a causal trace and $t_1:M_1\overset{m_1,p_1}{\Rightarrow} N_1$, $t_2M_2\overset{m_2,p_2}{\Rightarrow} N_2$ two transitions such that $t_1\prec t_2$ but $t_1< t_2$. Then there exists transition $t_3$ such that $t_3\leq t_2$ and either $t_1\prec t_2$ or $t_3\dashv t_1$.
222+
Let $\theta$ be a causal trace and $t_1:M_1\overset{m_1,p_1}{\Rightarrow} N_1$, $t_2:M_2\overset{m_2,p_2}{\Rightarrow} N_2$ be two transitions such that $t_1\prec t_2$ but $\neg(t_1\ll t_2)$. Then there exists transition $t_3$ such that $t_3\leq t_2$ and either $t_1\prec t_2$ or $t_3\dashv t_1$.
170223
\end{lemma}
171224
\begin{proof}
172-
From~\autoref{def:prec} there exists $t_1:M_1\overset{m_1,p_1}{\Rightarrow} N_1$ and $t_2:M_2\overset{m_2,p_2}{\Rightarrow} N_2$ two transitions such that $\alpha(t_1)=e_1$, $\alpha(t_2)=e_2$ and $\theta:N_1\Rightarrow^{\star}M_2$ a trace between them. Let us first make some remarks.
225+
Let $\theta':t_1;\cdots t_2$ be a subtrace of $\theta$.
173226

174227
First, as $e_1\not< e_2$, the trace $\theta$ is not empty. There exists at least one transition in $\theta$. We consider two cases: there is only one transition in $\theta$ and then the more general case of more than one transition.
175228

notes/ts_graphs.tex

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ \subsection{Transition systems}
104104
\draw [->] (l2) -- (m2);
105105
\draw [->] (m) -- (n1);
106106
\draw [->] (m) -- (m2);
107-
\draw [dotted, ->] (n1) -- (m2);
107+
\draw [-{Stealth[left]}] (n1) -- (m2);
108108
\draw [->] (l1) -- (m1);
109109
\draw [->] (r2) -- (n2);
110110
\draw [vecArrow] (m1) -- node [above,midway] {$m_1,p_1$} (n1);
@@ -132,7 +132,7 @@ \subsection{Transition systems}
132132
\draw [->] (o) -- (l2);
133133
\draw [->] (r1) -- (n1);
134134
\draw [->] (l2) -- (m2);
135-
\draw [dotted, ->] (n1) -- (m2);
135+
\draw [-{Stealth[left]}] (n1) -- (m2);
136136
\draw [->] (l1) -- (m1);
137137
\draw [->] (r2) -- (n2);
138138
\draw [vecArrow] (m1) -- node [above,midway] {$m_1,p_1$} (n1);
@@ -170,7 +170,7 @@ \subsection{Transition systems}
170170
\draw [->] (l2) -- (m2);
171171
\draw [->] (m) -- (m1);
172172
\draw [->] (m) -- (m2);
173-
\draw [dotted, ->] (m1) -- (m2);
173+
\draw [-{Stealth[left]}] (m1) -- (m2);
174174
\draw [->] (r2) -- (n2);
175175
\draw [vecArrow] (m2) -- node [above,midway] {$m_2,p_2$} (n2);
176176
\draw [vecArrow] (l2) -- (r2);
@@ -192,7 +192,7 @@ \subsection{Transition systems}
192192
\draw [->] (o) -- (l2);
193193
\draw [->] (l1) -- (m1);
194194
\draw [->] (l2) -- (m2);
195-
\draw [dotted, ->] (m1) -- (m2);
195+
\draw [-{Stealth[left]}] (m1) -- (m2);
196196
\draw [->] (r2) -- (n2);
197197
\draw [vecArrow] (m2) -- node [above,midway] {$m_2,p_2$} (n2);
198198
\draw [vecArrow] (l2) -- (r2);

0 commit comments

Comments
 (0)