This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate important metrics.
You can use the predictions I prepared and explore the results on the COCO validation dataset. The predictions are coming from a Mask R-CNN model trained with mmdetection.
- Download (and extract in project directory) the labels, annotations and images:
https://drive.google.com/open?id=1wxIagenNdCt_qphEe8gZYK7H2_to9QXl
- Setup using docker
sudo docker run -p 8501:8501 -it -v "$PWD"/coco_data:/coco_data i008/cocoexp:latest \
--coco_train /coco_data/ground_truth_annotations.json \
--coco_predictions /coco_data/predictions.json \
--images_path /coco_data/images/
- Setup using conda
conda env update
conda activate cocoexplorer
streamlit run coco_explorer.py -- --coco_train ./coco_data/ground_truth_annotations.json --coco_predictions ./coco_data/predictions.json --images_path ./coco_data/val2017/
- Setup using pip
python3 -m venv .venv
. .venv/bin/activate
pip install -r requirements.txt
streamlit run coco_explorer.py -- --coco_train ./coco_data/ground_truth_annotations.json --coco_predictions ./coco_data/predictions.json --images_path ./coco_data/val2017/
- go to http://localhost:8501
In the same way you can explore your own results. Just follow the official COCO dataset format for annotations and predictions.