Inflate 2dresnet to 3dresnet and use imagenet2d pretrain for train kinetics by tensorflow
First follow the instructions for install I3D-Tensorflow
Then, clone this repository using
$git clone https://github.com/LossNAN/Inflate_ResNet2D_3D.git
1>download Kinetics dataset by yourself, dataset
2>extract RGB frames by your self(25fps or 30fps), such as:
- ~PATH/Kinetics/train_256/abseiling/-3B32lodo2M_000059_000069 for rgb frames
3>convert images to list for train and test
cd ./experiments/kinetics-400/data_list/
python gen_train_list.py
python gen_test_list.py
- you will get npy_files for your own dataset
- such as: train_data_list.npy
1>if you get path errors, please modify by yourself
cd ./experiments/kinetics-400
python multi_gpu_train.py
2>argues
- learning_rate: Initial learning rate
- max_steps: Number of steps to run trainer
- batch_size: Batch size
- num_frame_per_clib: Nummber of frames per clib
- crop_size: Crop_size
- classics: The num of class
3>models will be stored at ./models, and tensorboard logs will be stored at ./visul_logs
tensorboard --logdir=~path/experiments/Kinetics-400/visual_logs/
1>if you get path errors, please modify by yourself
cd ./experiments/kinetics-400
python multi_gpu_test.py
Architecture | Iters | Pre_train | ACC/top1/top5 |
---|---|---|---|
I3D_baseline | 60k | IMAGENET | 66.3/86.7 |