Skip to content

Commit

Permalink
added faiss package
Browse files Browse the repository at this point in the history
  • Loading branch information
dusty-nv committed Sep 21, 2023
1 parent 4075faf commit 2f115d1
Show file tree
Hide file tree
Showing 4 changed files with 266 additions and 0 deletions.
60 changes: 60 additions & 0 deletions packages/vectordb/faiss/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#---
# name: faiss
# group: vectordb
# config: config.py
# depends: [numpy, cmake]
# test: [test.py]
#---
ARG BASE_IMAGE
FROM ${BASE_IMAGE}

WORKDIR /opt

ARG CUDA_ARCHITECTURES

ARG FAISS_REPO=facebookresearch/faiss
ARG FAISS_BRANCH=main

RUN apt-get update && \
apt-get install -y --no-install-recommends \
libopenblas-dev \
swig \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean

# workaround for 'Could NOT find Python3 (missing: Python3_NumPy_INCLUDE_DIRS Development'
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3 1 && \
apt purge -y python3.9 libpython3.9* || echo "python3.9 not found, skipping removal" && \
ls -ll /usr/bin/python*

ADD https://api.github.com/repos/${FAISS_REPO}/git/refs/heads/${FAISS_BRANCH} /tmp/faiss_version.json

RUN git clone --branch=${FAISS_BRANCH} --depth=1 https://github.com/${FAISS_REPO}

RUN mkdir faiss/build && \
cd faiss/build && \
cmake \
-DFAISS_ENABLE_GPU=ON \
-DFAISS_ENABLE_PYTHON=ON \
-DFAISS_ENABLE_RAFT=ON \
-DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES} \
../ && \
make -j$(nproc) faiss && \
make install

RUN cd faiss/build && \
make demo_ivfpq_indexing && \
make demo_ivfpq_indexing_gpu

RUN cd faiss/build && \
make -j$(nproc) swigfaiss

RUN cd faiss/build/faiss/python && \
python3 setup.py --verbose bdist_wheel && \
cp dist/faiss*.whl /opt

RUN pip3 install --no-cache-dir --verbose /opt/faiss*.whl

WORKDIR /

RUN pip3 show faiss && python3 -c 'import faiss'
125 changes: 125 additions & 0 deletions packages/vectordb/faiss/benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
#!/usr/bin/env python3
import os
import time
import socket
import datetime
import argparse

import faiss
import numpy as np

parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-k', type=int, default=4, help='the number of nearest neighbors to search for')
parser.add_argument('-d', '--dim', type=int, default=5120, help='the dimensionality of the embedding vectors') # 2621440

parser.add_argument('--index', type=str, default='Flat', help='the type of index to use') # https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
parser.add_argument('--index-size', type=int, default=4096, help='the number of vectors to add to the index')
parser.add_argument('--index-batch', type=int, default=1, help='the number of vectors to add to index at a time')

parser.add_argument('--search-queries', type=int, default=4096, help='the number of search queries to run')
parser.add_argument('--search-batch', type=int, default=1, help='the number of search queries to run at a time')

parser.add_argument('--dtype', type=str, default='float32', help='datatype of the vectors')
parser.add_argument('--seed', type=int, default=1234, help='change the random seed used')
parser.add_argument('--cpu', action='store_true', help='disable GPU acceleration')
parser.add_argument('--save', type=str, default='', help='CSV file to save benchmarking results to')


args = parser.parse_args()
print(args)

np.random.seed(args.seed)

print(f"building random numpy arrays ({args.index_size}, {args.dim})")

xb = np.random.random((args.index_size, args.dim)).astype(args.dtype)
xb[:, 0] += np.arange(args.index_size) / 1000.
xq = np.random.random((args.search_queries, args.dim)).astype(args.dtype)
xq[:, 0] += np.arange(args.search_queries) / 1000.

print(xb.shape, xb.dtype)

vector_size = (args.dim * xb.itemsize) / (1024*1024) # size of one vector in MB

print(f"vector size: {vector_size*1024*1024:.0f} bytes")
print(f"numpy array size: {(xb.size * xb.itemsize) / (1024*1024):.3f} MB")
print(f"creating index type: {args.index}")

index = faiss.index_factory(args.dim, args.index) #faiss.IndexFlatL2(args.dim)

if not args.cpu:
res = faiss.StandardGpuResources() # use a single GPU
index = faiss.index_cpu_to_gpu(res, 0, index)

if not index.is_trained:
print(f"training index {args.index}")
index.train(xb)

# profile indexing
avg_index_time = 0
avg_index_rate = 0

avg_factor = 1.0 / (args.index_size / args.index_batch)

for i in range(0, args.index_size, args.index_batch):
time_begin = time.perf_counter()
index.add(xb[i:i+args.index_batch])
index_time = time.perf_counter() - time_begin
index_rate = args.index_batch / index_time
avg_index_time += index_time * avg_factor
avg_index_rate += index_rate * avg_factor
if i % 32 == 0:
print(f"added ({args.index_batch}, {args.dim}) vectors: {index_time*1000:.2f} ms, {index_rate:.1f} vectors/sec, {index_rate*vector_size:.1f} MB/s")

def print_index_stats():
print(f"{args.index} index size: ({index.ntotal}, {args.dim})")
print(f"{args.index} index time: {avg_index_time*1000:.2f} ms")
print(f"{args.index} index rate: {avg_index_rate:.1f} vectors/sec")
print(f"{args.index} index bandwidth: {avg_index_rate*vector_size:.1f} MB/s")
print(f"{args.index} index trained: {index.is_trained}")

# profile search
avg_search_time = 0
avg_search_rate = 0

avg_factor = 1.0 / (args.search_queries / args.search_batch)

for i in range(0, args.search_queries, args.search_batch):
time_begin = time.perf_counter()
D, I = index.search(xq[i:i+args.search_batch], args.k)
search_time = time.perf_counter() - time_begin
search_rate = args.search_batch / search_time
avg_search_time += search_time * avg_factor
avg_search_rate += search_rate * avg_factor
if i % 32 == 0:
print(f"search ({args.search_batch}, {args.dim}) vectors: {search_time*1000:.2f} ms, {search_rate:.1f} vectors/sec, {search_rate*vector_size:.1f} MB/s")

def print_search_stats():
print(f"{args.index} search size: ({args.search_batch}, {args.dim})")
print(f"{args.index} search time: {avg_search_time*1000:.2f} ms")
print(f"{args.index} search rate: {avg_search_rate:.1f} vectors/sec")
print(f"{args.index} search bandwidth: {avg_search_rate*vector_size:.1f} MB/s")

print("\n")
print_index_stats()
print("")
print_search_stats()

# https://github.com/facebookresearch/faiss/wiki/FAQ#why-does-the-ram-usage-not-go-down-when-i-delete-an-index
memory_usage = faiss.get_mem_usage_kb() / 1024
print(f"\nPeak memory usage: {memory_usage:.1f} MB")


if args.save:
if not os.path.isfile(args.save): # csv header
with open(args.save, 'w') as file:
file.write(f"timestamp, hostname, api, device, index, dtype, vector_dim, num_vectors, ")
file.write(f"index_batch, index_time, index_rate, index_bandwidth, ")
file.write(f"search_batch, search_time, search_rate, search_bandwidth, memory\n")
with open(args.save, 'a') as file:
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, faiss, ")
file.write(f"{'cpu' if args.cpu else 'cuda'}, {args.index}, {args.dtype}, {args.dim}, {args.index_size}, ")
file.write(f"{args.index_batch}, {avg_index_time}, {avg_index_rate}, {avg_index_rate*vector_size}, ")
file.write(f"{args.search_batch}, {avg_search_time}, {avg_search_rate}, {avg_search_rate*vector_size}, {memory_usage}\n")

6 changes: 6 additions & 0 deletions packages/vectordb/faiss/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@

from jetson_containers import CUDA_ARCHITECTURES

package['build_args'] = {
'CUDA_ARCHITECTURES': ';'.join([str(x) for x in CUDA_ARCHITECTURES]),
}
75 changes: 75 additions & 0 deletions packages/vectordb/faiss/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
#!/usr/bin/env python3
import time
import argparse

import faiss
import numpy as np

parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('-k', type=int, default=4)
parser.add_argument('-d', '--dim', type=int, default=64) # 2621440
parser.add_argument('--num-vectors', type=int, default=100000) # 512
parser.add_argument('--num-queries', type=int, default=1)
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--cpu', action='store_true')

args = parser.parse_args()
print(args)

np.random.seed(args.seed)

print(f"building random numpy arrays ({args.num_vectors}, {args.dim})")

xb = np.random.random((args.num_vectors, args.dim)).astype('float32')
xb[:, 0] += np.arange(args.num_vectors) / 1000.
xq = np.random.random((args.num_queries, args.dim)).astype('float32')
xq[:, 0] += np.arange(args.num_queries) / 1000.

print(f"numpy array size: {(xb.size * xb.itemsize) / (1024*1024):.3f} MB")
print(f"creating index")

index = faiss.IndexFlatL2(args.dim) # build the index

if not args.cpu:
res = faiss.StandardGpuResources() # use a single GPU
index = faiss.index_cpu_to_gpu(res, 0, index)

# https://github.com/facebookresearch/faiss/wiki/FAQ#why-does-the-ram-usage-not-go-down-when-i-delete-an-index
print(f"mem usage: {faiss.get_mem_usage_kb() / 1024:.3f} MB")
print(index.is_trained)

time_begin = time.perf_counter()
index.add(xb[:-1]) # add vectors to the index
print(f"time to add {xb.shape} vectors: {time.perf_counter()-time_begin:.3} sec")
print(index.ntotal)

time_begin = time.perf_counter()
index.add(xb[-1:]) # add vectors to the index
print(f"time to add 1 vector: {time.perf_counter()-time_begin:.3} sec")
print(index.ntotal)

def search(queries, k=args.k):
time_begin = time.perf_counter()
D, I = index.search(queries, k) # sanity check
print(I)
print(D)
print(f"time to search {len(queries)}: {time.perf_counter()-time_begin:.3} sec")

"""
Sanity check on the first 5 vectors:
[[ 0 393 363 78]
[ 1 555 277 364]
[ 2 304 101 13]
[ 3 173 18 182]
[ 4 288 370 531]]
[[ 0. 7.17517328 7.2076292 7.25116253]
[ 0. 6.32356453 6.6845808 6.79994535]
[ 0. 5.79640865 6.39173603 7.28151226]
[ 0. 7.27790546 7.52798653 7.66284657]
[ 0. 6.76380348 7.29512024 7.36881447]]
"""
search(xb[:5])
search(xq)

0 comments on commit 2f115d1

Please sign in to comment.