Closed
Description
I'm using torch in PythonCall. When I try to create tensors multiple times, even after reassigning the same tensor or setting it to nothing, I don't observe any decrease in GPU memory usage. This persists even after using GC.
using PythonCall
torch = pyimport("torch")
torch.cuda.is_available()
n=20000
a = torch.randn((1,n*n),device=torch.device("cuda")) # VRAM increase here
a = torch.randn((1,n*n),device=torch.device("cuda")) # VRAM also increase here
a = torch.randn((1,n*n),device=torch.device("cuda")) # VRAM also increase here
a = nothing # useless
PythonCall.GC.gc() # useless
torch.cuda.empty_cache() # useless
Anyone can help?
julia Version 1.11.3
julia> torch.version
Python: '2.6.0+cu126'
Metadata
Metadata
Assignees
Labels
No labels