Closed
Description
Let's consider the code fragment
import numpy as np
X = np.ones((10,10))
Y = np.ones((10,10))
x, y = jl.MyModule.compute_something(X, Y, -1.0, 1.0, -1.0, 1.0)
where I call a Julia function defined in the MyModule
module. I am getting the error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Julia: MethodError: no method matching compute_something(::PythonCall.PyArray{Float64, 2, Float64, true, false}, ::PythonCall.PyArray{Float64, 2, Float64, true, false}, ::Float64, ::Float64, ::Float64, ::Float64)
Closest candidates are:
compute_something(!Matched::Matrix{T}, !Matched::Matrix{T}, ::T, ::T, ::T, ::T) where T<:Real at /opt/julia/compute_something:362
Does this mean that I need to define a new method for compute_something()
with ::PythonCall.PyArray
arguments? Can I avoid doing that? From the documentation it is not clear what to do in this situation.
Metadata
Metadata
Assignees
Labels
No labels