Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

avoid conversion from Char to String to Symbol in some LinearAlgebra routines #29352

Merged
merged 1 commit into from
Sep 25, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
avoid conversion from Char to String to Symbol in some LinearAlgebra …
…routines
  • Loading branch information
KristofferC committed Sep 24, 2018
commit 46d69ac3190fa04493698351a56900b706e4b367
20 changes: 17 additions & 3 deletions stdlib/LinearAlgebra/src/LinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -226,14 +226,28 @@ end

function char_uplo(uplo::Symbol)
if uplo == :U
'U'
return 'U'
elseif uplo == :L
'L'
return 'L'
else
throw(ArgumentError("uplo argument must be either :U (upper) or :L (lower)"))
throw_uplo()
end
end

function sym_uplo(uplo::Char)
if uplo == 'U'
return :U
elseif uplo == 'L'
return :L
else
throw_uplo()
end
end


@noinline throw_uplo() = throw(ArgumentError("uplo argument must be either :U (upper) or :L (lower)"))


"""
ldiv!(Y, A, B) -> Y

Expand Down
4 changes: 2 additions & 2 deletions stdlib/LinearAlgebra/src/cholesky.jl
Original file line number Diff line number Diff line change
Expand Up @@ -356,9 +356,9 @@ function getproperty(C::CholeskyPivoted{T}, d::Symbol) where T<:BlasFloat
Cfactors = getfield(C, :factors)
Cuplo = getfield(C, :uplo)
if d == :U
return UpperTriangular(Symbol(Cuplo) == d ? Cfactors : copy(Cfactors'))
return UpperTriangular(sym_uplo(Cuplo) == d ? Cfactors : copy(Cfactors'))
elseif d == :L
return LowerTriangular(Symbol(Cuplo) == d ? Cfactors : copy(Cfactors'))
return LowerTriangular(sym_uplo(Cuplo) == d ? Cfactors : copy(Cfactors'))
elseif d == :p
return getfield(C, :piv)
elseif d == :P
Expand Down
24 changes: 12 additions & 12 deletions stdlib/LinearAlgebra/src/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -162,10 +162,10 @@ for (S, H) in ((:Symmetric, :Hermitian), (:Hermitian, :Symmetric))
throw(ArgumentError("Cannot construct $($S); uplo doesn't match"))
end
end
$S(A::$H) = $S(A.data, Symbol(A.uplo))
$S(A::$H) = $S(A.data, sym_uplo(A.uplo))
function $S(A::$H, uplo::Symbol)
if A.uplo == char_uplo(uplo)
return $S(A.data, Symbol(A.uplo))
return $S(A.data, sym_uplo(A.uplo))
else
throw(ArgumentError("Cannot construct $($S); uplo doesn't match"))
end
Expand All @@ -185,7 +185,7 @@ size(A::HermOrSym) = size(A.data)
@inline function getindex(A::Symmetric, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds if i == j
return symmetric(A.data[i, j], Symbol(A.uplo))::symmetric_type(eltype(A.data))
return symmetric(A.data[i, j], sym_uplo(A.uplo))::symmetric_type(eltype(A.data))
elseif (A.uplo == 'U') == (i < j)
return A.data[i, j]
else
Expand All @@ -195,7 +195,7 @@ end
@inline function getindex(A::Hermitian, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
@inbounds if i == j
return hermitian(A.data[i, j], Symbol(A.uplo))::hermitian_type(eltype(A.data))
return hermitian(A.data[i, j], sym_uplo(A.uplo))::hermitian_type(eltype(A.data))
elseif (A.uplo == 'U') == (i < j)
return A.data[i, j]
else
Expand Down Expand Up @@ -236,14 +236,14 @@ similar(A::Union{Symmetric,Hermitian}, ::Type{T}, dims::Dims{N}) where {T,N} = s
function Matrix(A::Symmetric)
B = copytri!(convert(Matrix, copy(A.data)), A.uplo)
for i = 1:size(A, 1)
B[i,i] = symmetric(B[i,i], Symbol(A.uplo))::symmetric_type(eltype(A.data))
B[i,i] = symmetric(B[i,i], sym_uplo(A.uplo))::symmetric_type(eltype(A.data))
end
return B
end
function Matrix(A::Hermitian)
B = copytri!(convert(Matrix, copy(A.data)), A.uplo, true)
for i = 1:size(A, 1)
B[i,i] = hermitian(B[i,i], Symbol(A.uplo))::hermitian_type(eltype(A.data))
B[i,i] = hermitian(B[i,i], sym_uplo(A.uplo))::hermitian_type(eltype(A.data))
end
return B
end
Expand All @@ -252,10 +252,10 @@ Array(A::Union{Symmetric,Hermitian}) = convert(Matrix, A)
parent(A::HermOrSym) = A.data
Symmetric{T,S}(A::Symmetric{T,S}) where {T,S<:AbstractMatrix} = A
Symmetric{T,S}(A::Symmetric) where {T,S<:AbstractMatrix} = Symmetric{T,S}(convert(S,A.data),A.uplo)
AbstractMatrix{T}(A::Symmetric) where {T} = Symmetric(convert(AbstractMatrix{T}, A.data), Symbol(A.uplo))
AbstractMatrix{T}(A::Symmetric) where {T} = Symmetric(convert(AbstractMatrix{T}, A.data), sym_uplo(A.uplo))
Hermitian{T,S}(A::Hermitian{T,S}) where {T,S<:AbstractMatrix} = A
Hermitian{T,S}(A::Hermitian) where {T,S<:AbstractMatrix} = Hermitian{T,S}(convert(S,A.data),A.uplo)
AbstractMatrix{T}(A::Hermitian) where {T} = Hermitian(convert(AbstractMatrix{T}, A.data), Symbol(A.uplo))
AbstractMatrix{T}(A::Hermitian) where {T} = Hermitian(convert(AbstractMatrix{T}, A.data), sym_uplo(A.uplo))

copy(A::Symmetric{T,S}) where {T,S} = (B = copy(A.data); Symmetric{T,typeof(B)}(B,A.uplo))
copy(A::Hermitian{T,S}) where {T,S} = (B = copy(A.data); Hermitian{T,typeof(B)}(B,A.uplo))
Expand Down Expand Up @@ -442,9 +442,9 @@ mul!(C::StridedMatrix{T}, A::StridedMatrix{T}, B::Hermitian{T,<:StridedMatrix})

for T in (:Symmetric, :Hermitian), op in (:*, :/)
# Deal with an ambiguous case
@eval ($op)(A::$T, x::Bool) = ($T)(($op)(A.data, x), Symbol(A.uplo))
@eval ($op)(A::$T, x::Bool) = ($T)(($op)(A.data, x), sym_uplo(A.uplo))
S = T == :Hermitian ? :Real : :Number
@eval ($op)(A::$T, x::$S) = ($T)(($op)(A.data, x), Symbol(A.uplo))
@eval ($op)(A::$T, x::$S) = ($T)(($op)(A.data, x), sym_uplo(A.uplo))
end

function factorize(A::HermOrSym{T}) where T
Expand Down Expand Up @@ -481,8 +481,8 @@ function _inv(A::HermOrSym)
end
B
end
inv(A::Hermitian{<:Any,<:StridedMatrix}) = Hermitian(_inv(A), Symbol(A.uplo))
inv(A::Symmetric{<:Any,<:StridedMatrix}) = Symmetric(_inv(A), Symbol(A.uplo))
inv(A::Hermitian{<:Any,<:StridedMatrix}) = Hermitian(_inv(A), sym_uplo(A.uplo))
inv(A::Symmetric{<:Any,<:StridedMatrix}) = Symmetric(_inv(A), sym_uplo(A.uplo))

eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}) = Eigen(LAPACK.syevr!('V', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)...)

Expand Down