Closed
Description
In v1.0, using the Cholesky decomposition of a sparse array to solve a linear system for the transpose results in a two-dimensional array instead of a vector:
using LinearAlgebra,SparseArrays
N = 4
A = sparse(I,N,N)
C = cholesky(A)
b = randn(N)
C'\b
returns
4×1 Array{Float64,2}:
...
By contrast, C\b
(correctly) returns
4-element Array{Float64,1}:
...
(The corresponding test for Array(I,N,N)
throws a ERROR: MethodError: no method matching adjoint(::Cholesky{Float64,Array{Float64,2}})
.)