-
Notifications
You must be signed in to change notification settings - Fork 221
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #738 from denizyuret/dy/rnncompat
copied the old rnn.jl->rnncompat.jl for Flux compatibility
- Loading branch information
Showing
2 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
# CUDNN_RNN_RELU: Stock RNN with ReLu activation | ||
# CUDNN_RNN_TANH: Stock RNN with tanh activation | ||
# CUDNN_LSTM: LSTM with no peephole connections | ||
# CUDNN_GRU: Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1) | ||
|
||
# param layout: | ||
# RNN: [weight, bias] × [input, hidden] | ||
# GRU: [weight, bias] × [input, hidden] × [reset, update, newmem] | ||
# LSTM: [weight, bias] × [input, hidden] × [input, forget, newmem, output] | ||
|
||
using LinearAlgebra | ||
|
||
function params(w::CuVector, input, hidden, n = 1) | ||
slice(offset, shape) = reshape(view(w, offset.+(1:prod(shape))), shape) | ||
wx = slice(0, (input, hidden*n)) | ||
wh = slice(length(wx), (hidden, hidden*n)) | ||
bias = view(w, length(wx)+length(wh) .+ (1:hidden*n)) | ||
(wx, wh), bias | ||
end | ||
|
||
mutable struct RNNDesc{T} | ||
mode::cudnnRNNMode_t | ||
input::Int | ||
hidden::Int | ||
params::CuVector{T} | ||
weights::NTuple{2,CuMatrix{T}} | ||
bias::CuVector{T} | ||
ptr::Ptr{Nothing} | ||
end | ||
|
||
Base.unsafe_convert(::Type{Ptr{Nothing}}, d::RNNDesc) = d.ptr | ||
|
||
function rnnParamSize(T, r, input) | ||
size = Csize_t[0] | ||
cudnnGetRNNParamsSize(handle(), r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T)) | ||
return Int(size[])÷sizeof(T) | ||
end | ||
|
||
ngates(mode) = [1, 1, 4, 3][mode+1] | ||
ngates(r::RNNDesc) = ngates(r.mode) | ||
|
||
function RNNDesc{T}(mode::cudnnRNNMode_t, input::Int, hidden::Int; layers = 1) where T | ||
d = [C_NULL] | ||
cudnnCreateRNNDescriptor(d) | ||
|
||
dropoutDesc = DropoutDesc(0) | ||
inputMode = CUDNN_LINEAR_INPUT | ||
direction = CUDNN_UNIDIRECTIONAL | ||
algo = CUDNN_RNN_ALGO_STANDARD | ||
cudnnSetRNNDescriptor_v6(handle(),d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T)) | ||
|
||
w = CUDA.zeros(T, rnnParamSize(T, d[], input)) | ||
# TODO: avoid reserve allocation here | ||
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates(mode))..., d[]) | ||
finalizer(rd) do x | ||
cudnnDestroyRNNDescriptor(x) | ||
end | ||
return rd | ||
end | ||
|
||
function setweights!(d::RNNDesc, Wi, Wh, b) | ||
transpose!(d.weights[1], Wi) | ||
transpose!(d.weights[2], Wh) | ||
copyto!(d.bias, b) | ||
return | ||
end | ||
|
||
function cudnnGetRNNTrainingReserveSize(r::RNNDesc, seqlen, xdesc) | ||
size = Csize_t[0] | ||
cudnnGetRNNTrainingReserveSize(handle(), r, seqlen, xdesc, size) | ||
return Int(size[]) | ||
end | ||
|
||
function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, hod, | ||
ho, cod, co, reserve=nothing) where T | ||
@workspace size=@argout( | ||
cudnnGetRNNWorkspaceSize(handle(), rnn, seqlen, xd, | ||
out(Ref{Csize_t}())) | ||
)[] workspace->begin | ||
if reserve == nothing | ||
cudnnRNNForwardInference(handle(), rnn, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, | ||
hod, ho, cod, co, workspace, sizeof(workspace)) | ||
else | ||
cudnnRNNForwardTraining(handle(), rnn, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, | ||
hod, ho, cod, co, workspace, sizeof(workspace), | ||
reserve, sizeof(reserve)) | ||
end | ||
end | ||
end | ||
|
||
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))] | ||
|
||
hDesc(h::Nothing) = C_NULL, CU_NULL | ||
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing)) | ||
function hDesc(h::DenseCuArray) | ||
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h | ||
end | ||
|
||
# TODO: can we just manipulate strides here? | ||
# TODO: should use repmat, but this isn't implemented. | ||
hBatch(x::AbstractVector, h::CuVector) = h | ||
hBatch(x::AbstractMatrix, h::CuVector) = h .* CUDA.ones(1, size(x, 2)) | ||
hBatch(x::AbstractMatrix, h::CuMatrix) = h .* CUDA.ones(1, size(h,2) == 1 ? size(x,2) : 1) | ||
|
||
function forward(rnn::RNNDesc{T}, x::DenseCuArray{T}, h_::DenseCuArray{T}, c_ = nothing, train = Val{false}) where T | ||
h = hBatch(x, h_) | ||
c = c_ == nothing ? nothing : hBatch(x, c_) | ||
@assert size(x, 1) == rnn.input | ||
@assert size(h, 1) == rnn.hidden | ||
@assert size(x, 2) == size(h, 2) | ||
seqLength = 1 | ||
xdesc = xDesc(x) | ||
y = x isa AbstractVector ? similar(x, rnn.hidden) : similar(x, rnn.hidden, size(x, 2)) | ||
ho = similar(h) | ||
ydesc = xDesc(y) | ||
reserve = train == Val{true} ? | ||
CuVector{UInt8}(undef, cudnnGetRNNTrainingReserveSize(rnn, seqLength, xdesc)) : | ||
nothing | ||
co = c == nothing ? c : similar(c) | ||
cudnnRNNForward(rnn, seqLength, | ||
xdesc, x, | ||
hDesc(h)..., | ||
hDesc(c)..., | ||
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params, | ||
ydesc, y, | ||
hDesc(ho)..., | ||
hDesc(co)..., | ||
reserve) | ||
result = c == nothing ? (y, ho) : (y, ho, co) | ||
return train == Val{true} ? (reserve, result) : result | ||
end | ||
|
||
forwardTrain(rnn::RNNDesc{T}, x::DenseCuArray{T}, h::DenseCuArray{T}, c = nothing) where T = | ||
forward(rnn, x, h, c, Val{true}) | ||
|
||
function cudnnRNNBackwardData(rnnDesc, seqLength, yDesc, y, dyDesc, dy, dhyDesc, | ||
dhy, dcyDesc, dcy, wDesc, w, hxDesc, hx, cxDesc, cx, dxDesc, | ||
dx, dhxDesc, dhx, dcxDesc, dcx, reserve) | ||
@workspace size=@argout( | ||
cudnnGetRNNWorkspaceSize(handle(), rnnDesc, seqLength, dxDesc, | ||
out(Ref{Csize_t}())) | ||
)[] workspace->begin | ||
cudnnRNNBackwardData(handle(), rnnDesc, seqLength, yDesc, y, dyDesc, dy, dhyDesc, | ||
dhy, dcyDesc, dcy, wDesc, w, hxDesc, hx, cxDesc, cx, dxDesc, | ||
dx, dhxDesc, dhx, dcxDesc, dcx, workspace, sizeof(workspace), | ||
reserve, sizeof(reserve)) | ||
end | ||
end | ||
|
||
function backwardData(rnn::RNNDesc{T}, y, dy_, dho, dco, h, c, reserve) where T | ||
# Same as above, any more efficient way? | ||
dy = dy_ isa Integer ? zero(y) : dy_ | ||
yd = xDesc(y) | ||
dx = y isa AbstractVector ? similar(dy, rnn.input) : similar(dy, rnn.input, size(dy, 2)) | ||
dh = similar(h) | ||
dc = c == nothing ? nothing : similar(c) | ||
cudnnRNNBackwardData(rnn, 1, yd, y, yd, dy, hDesc(dho)..., hDesc(dco)..., | ||
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params, hDesc(h)..., | ||
hDesc(c)..., xDesc(dx), dx, hDesc(dh)..., hDesc(dc)..., reserve) | ||
return c == nothing ? (dx, dh) : (dx, dh, dc) | ||
end | ||
|
||
backwardData(rnn, y, dy, dho, hx, reserve) = | ||
backwardData(rnn, y, dy, dho, nothing, hx, nothing, reserve) | ||
|
||
function cudnnRNNBackwardWeights(rnnDesc, seqLength, xDesc, x, hxDesc, hx, yDesc, | ||
y, dwDesc, dw, reserve) | ||
@workspace size=@argout( | ||
cudnnGetRNNWorkspaceSize(handle(), rnnDesc, seqLength, xDesc, | ||
out(Ref{Csize_t}())) | ||
)[] workspace->begin | ||
cudnnRNNBackwardWeights(handle(), rnnDesc, seqLength, xDesc, x, hxDesc, hx, yDesc, | ||
y, workspace, sizeof(workspace), dwDesc, dw, | ||
reserve, sizeof(reserve)) | ||
end | ||
end | ||
|
||
function backwardWeights(rnn::RNNDesc{T}, x, h, y, reserve) where T | ||
dw = zero(rnn.params) | ||
cudnnRNNBackwardWeights(rnn, 1, xDesc(x), x, hDesc(h)..., xDesc(y), y, | ||
FilterDesc(T, (1, 1, length(dw))), dw, reserve) | ||
return params(dw, rnn.input, rnn.hidden, ngates(rnn)) | ||
end | ||
|
||
function pullback(rnn::RNNDesc{T}, x::DenseCuArray{T}, h::DenseCuArray{T}) where T <: Union{Float32,Float64} | ||
reserve, (y, ho) = CUDNN.forwardTrain(rnn, x, h) | ||
return (y, ho), function (dy, dho) | ||
h_ = CUDNN.hBatch(x, h) | ||
dx, dh = CUDNN.backwardData(rnn, y, dy, dho, h_, reserve) | ||
(dWi, dWh), db = CUDNN.backwardWeights(rnn, x, h_, y, reserve) | ||
return (x = dx, h = dh, Wi = dWi, Wh = dWh, b = db) | ||
end | ||
end | ||
|
||
function pullback(rnn::RNNDesc{T}, x::DenseCuArray{T}, h::DenseCuArray{T}, c::DenseCuArray{T}) where T <: Union{Float32,Float64} | ||
reserve, (y, ho, co) = CUDNN.forwardTrain(rnn, x, h, c) | ||
return (y, ho, co), function (dy, dho, dco) | ||
h_ = CUDNN.hBatch(x, h) | ||
c_ = CUDNN.hBatch(x, c) | ||
dx, dh, dc = CUDNN.backwardData(rnn, y, dy, dho, dco, h_, c_, reserve) | ||
(dWi, dWh), db = CUDNN.backwardWeights(rnn, x, h_, y, reserve) | ||
return (x = dx, h = dh, c = dc, Wi = dWi, Wh = dWh, b = db) | ||
end | ||
end |