Skip to content

ForwardDiff fails to compute correct derivative #676

Closed
@nickeltingupta

Description

@nickeltingupta

It seems I've stumbled onto a case where ForwardDiff.jl gives incorrect result.

I have a function in variable t whose derivative I want to calculate at t=0.0. Using TaylorSeries.jl gives correct result while using ForwardDiff.jl gives incorrect result. This happens only for t=0.0.

I know that ForwardDiff.jl gives incorrect result because I cross-checked with Mathematica (both by Taylor expansion and direct derivative).

The Julia code :

using TaylorSeries,LinearAlgebra,ZChop
using ForwardDiff

ϵ = 1.5+0.0im 
γ = 0.6+0.0im 
ω = 1.0+0.0im

Ω = sqrt^2 - γ^2);

t=Taylor1(BigFloat,5)

RA(w)=((cos/4)/(cos/8)^2))*2.0)/(sqrt((1.0/(-ϵ^2 + 4.0 * γ^2 * Ω^2)) * ((ϵ^2 + 4.0 * γ^2 * Ω^2) * sec/8)^4 + (1/sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2)))) * cosh((w* sqrt^2 * Ω^2 - Ω^4 - sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω) * sec/8)^4 
* ((-3.0 * ϵ^2 + 4.0 * γ^2 * Ω^2) * sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))) * cosh((w* sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω) - im* sqrt(2.0) * ϵ *^2 - 4.0 * γ^2 * Ω^2 - 2.0 * sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))) * sinh((w* sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω)) 
+ (sinh((w* sqrt^2 * Ω^2 - Ω^4 - sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω) * (32.0 *^4 + 8.0 * γ^2 * Ω^4 *^2 + Ω^2) - 2.0 * ϵ^2 * Ω^2 *^2 + 3.0 * Ω^2)) * sin/8)^4 * sinh((w* sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω) + 2.0im* ϵ * sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))) *^2 - 4.0 * γ^2 * Ω^2 + 2.0 * sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))) * cosh((w* sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))))/Ω) * sec/8)^2 * (-1.0 + tan/8)^2)))
/(sqrt^2 * Ω^2 - Ω^4 - sqrt^4 *^2 - 4.0 * γ^2 * Ω^2))) * sqrt^2 * Ω^2 - Ω^4 + sqrt^4 *^2 - 4.0 * γ^2 * Ω^2)))))))

println(ForwardDiff.derivative(RA,0.0))
println(TaylorSeries.getcoeff(taylor_expand(RA,0.0,order=1),1))

#Output
#0.0 - 0.012968711710371502im
#0.0 - 1.3258252147247764im

The mathematica code to cross-check :

\[Epsilon] = 1.5;
\[Gamma] = 0.6;
\[Omega] = 1.0;
\[CapitalOmega] = \[Sqrt](\[Omega]^2 - \[Gamma]^2);

RetAmp[t_] := (Cos[\[Pi]/4]/Cos[\[Pi]/8]^2)*2.0/
   Sqrt[(1.0/(-\[Epsilon]^2 + 
         4.0*\[Gamma]^2*\[CapitalOmega]^2))*((\[Epsilon]^2 + 
          4.0*\[Gamma]^2*\[CapitalOmega]^2)*
        Sec[\[Pi]/8]^4 + (1/
          Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 + 
            Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                4.0*\[Gamma]^2*\[CapitalOmega]^2)]])*
        Cosh[(t*Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 \
- Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                  4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\[CapitalOmega]\
]*Sec[\[Pi]/
           8]^4*((-3.0*\[Epsilon]^2 + 
             4.0*\[Gamma]^2*\[CapitalOmega]^2)*
           Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 + 
             Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                 4.0*\[Gamma]^2*\[CapitalOmega]^2)]]*
           Cosh[(t*Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \
\[CapitalOmega]^4 + 
                 Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\
\[CapitalOmega]] - 
          I*Sqrt[2.0]*\[Epsilon]*(\[Epsilon]^2 - 
             4.0*\[Gamma]^2*\[CapitalOmega]^2 - 
             2.0*Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                  4.0*\[Gamma]^2*\[CapitalOmega]^2)])*
           Sinh[(t*Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \
\[CapitalOmega]^4 + 
                 Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\
\[CapitalOmega]]) + (Sinh[(t*
              Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 - 
                Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\
\[CapitalOmega]]*(32.0*(\[Epsilon]^4 + 
               8.0*\[Gamma]^2*\[CapitalOmega]^4*(\[Gamma]^2 + \
\[CapitalOmega]^2) - 
               2.0*\[Epsilon]^2*\[CapitalOmega]^2*(\[Gamma]^2 + 
                  3.0*\[CapitalOmega]^2))*Sin[\[Pi]/8]^4*
             Sinh[(t*Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \
\[CapitalOmega]^4 + 
                   Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\
\[CapitalOmega]] + 
            2.0*I*\[Epsilon]*
             Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 + 
               Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                   4.0*\[Gamma]^2*\[CapitalOmega]^2)]]*(\[Epsilon]^2 \
- 4.0*\[Gamma]^2*\[CapitalOmega]^2 + 
               2.0*Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)])*
             Cosh[(t*Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \
\[CapitalOmega]^4 + 
                   Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                    4.0*\[Gamma]^2*\[CapitalOmega]^2)]])/\
\[CapitalOmega]]*
             Sec[\[Pi]/8]^2*(-1.0 + 
               Tan[\[Pi]/
                  8]^2)))/(Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \
\[CapitalOmega]^4 - 
            Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                4.0*\[Gamma]^2*\[CapitalOmega]^2)]]*
          Sqrt[\[Gamma]^2*\[CapitalOmega]^2 - \[CapitalOmega]^4 + 
            Sqrt[\[CapitalOmega]^4*(\[Epsilon]^2 - 
                4.0*\[Gamma]^2*\[CapitalOmega]^2)]]))]


Series[RetAmp[t], {t, 0.0, 2}]
RetAmp'[t] /. t -> 0.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions