Skip to content

#481 possibly broke ishermitian #606

Open
@torfjelde

Description

@torfjelde

After #481 , ishermitian is now broken (maybe other methods too?) when working with ForwardDiff.Dual.

julia> Pkg.status()
Status `/tmp/jl_gs3tnK/Project.toml`
  [f6369f11] ForwardDiff v0.10.33
  [37e2e46d] LinearAlgebra

julia> using LinearAlgebra, ForwardDiff

julia> x = [1 0.5; 0.5 1]
2×2 Matrix{Float64}:
 1.0  0.5
 0.5  1.0

julia> ishermitian(x)
true

julia> f(x) = sum(cholesky(reshape(x, 2, 2)))
f (generic function with 1 method)

julia> ForwardDiff.gradient(vec(x))
ERROR: MethodError: no method matching gradient(::Vector{Float64})
Closest candidates are:
  gradient(::Any, ::StaticArraysCore.StaticArray) at ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:44
  gradient(::Any, ::StaticArraysCore.StaticArray, ::ForwardDiff.GradientConfig) at ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:45
  gradient(::Any, ::StaticArraysCore.StaticArray, ::ForwardDiff.GradientConfig, ::Val) at ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:46
  ...
Stacktrace:
 [1] top-level scope
   @ REPL[10]:1

julia> ForwardDiff.gradient(f, vec(x))
ERROR: PosDefException: matrix is not Hermitian; Cholesky factorization failed.
Stacktrace:
  [1] checkpositivedefinite(info::Int64)
    @ LinearAlgebra /opt/julia-1.8.2/share/julia/stdlib/v1.8/LinearAlgebra/src/factorization.jl:18
  [2] cholesky!(A::Matrix{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4}}, ::NoPivot; check::Bool)
    @ LinearAlgebra /opt/julia-1.8.2/share/julia/stdlib/v1.8/LinearAlgebra/src/cholesky.jl:299
  [3] #cholesky#162
    @ /opt/julia-1.8.2/share/julia/stdlib/v1.8/LinearAlgebra/src/cholesky.jl:402 [inlined]
  [4] cholesky (repeats 2 times)
    @ /opt/julia-1.8.2/share/julia/stdlib/v1.8/LinearAlgebra/src/cholesky.jl:402 [inlined]
  [5] f(x::Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4}})
    @ Main ./REPL[9]:1
  [6] vector_mode_dual_eval!
    @ ~/.julia/packages/ForwardDiff/eqMFf/src/apiutils.jl:37 [inlined]
  [7] vector_mode_gradient(f::typeof(f), x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4}}})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:106
  [8] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4}}}, ::Val{true})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:19
  [9] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 4}}}) (repeats 2 times)
    @ ForwardDiff ~/.julia/packages/ForwardDiff/eqMFf/src/gradient.jl:17
 [10] top-level scope
    @ REPL[11]:1

This is because now the A[i,j] != adjoint(A[j,i]) check performed in ishermitian returns true.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions