Skip to content

Commit

Permalink
Merge pull request #686 from JuliaDiff/ox/returnofmean
Browse files Browse the repository at this point in the history
Bring back rule for Mean(f,...
  • Loading branch information
oxinabox authored Dec 20, 2022
2 parents 024704e + f767c34 commit 9a405f7
Show file tree
Hide file tree
Showing 4 changed files with 88 additions and 8 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "ChainRules"
uuid = "082447d4-558c-5d27-93f4-14fc19e9eca2"
version = "1.45.0"
version = "1.46.0"

[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
Expand Down
36 changes: 30 additions & 6 deletions src/rulesets/Statistics/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,43 @@ _denom(x, dims) = size(x, dims)
_denom(x, dims::Colon) = length(x)
_denom(x, dims::Union{Tuple, AbstractArray}) = mapreduce(i->size(x, i), Base.mul_prod, unique(dims), init=1)

# TODO: We have `mean(f, x; dims)` as of 1.3.0-DEV.36
# https://github.com/JuliaDiff/ChainRules.jl/issues/85
function rrule(::typeof(mean), x::AbstractArray{<:Real}; dims=:)
y_sum, sum_pullback = rrule(sum, x; dims=dims)
function rrule(::typeof(mean), x::AbstractArray{<:Union{Real,Complex,AbstractArray}}; dims=:)
y_sum, sum_pullback = rrule(sum, x; dims)
n = _denom(x, dims)
function mean_pullback(ȳ)
_, ∂sum_x = sum_pullback(ȳ)
∂x = unthunk(∂sum_x) / n
_, ∂x = sum_pullback(unthunk(ȳ) / n)
return (NoTangent(), ∂x)
end
return y_sum / n, mean_pullback
end

function rrule(
config::RuleConfig{>:HasReverseMode},
::typeof(mean),
f::F,
x::AbstractArray{T};
dims=:,
) where {F, T<:Union{Real,Complex,AbstractArray}}
y_sum, sum_pullback = rrule(config, sum, f, x; dims)
n = _denom(x, dims)
function mean_pullback_f(ȳ)
return sum_pullback(unthunk(ȳ) / n)
end
return y_sum / n, mean_pullback_f
end

# Similar to https://github.com/JuliaDiff/ChainRules.jl/issues/522
# The rule above assumes `f` is callable. Arrays are not, this came up when taking
# the mean arrays with weights in StatsBase
@opt_out ChainRulesCore.rrule(
config::RuleConfig{>:HasReverseMode},
::typeof(mean),
x::AbstractArray,
wt::AbstractArray{<:Union{Real,Complex,AbstractArray}};
dims=:
)


#####
##### variance
#####
Expand Down
31 changes: 30 additions & 1 deletion test/rulesets/Statistics/statistics.jl
Original file line number Diff line number Diff line change
@@ -1,10 +1,39 @@
@testset "mean" begin
@testset "Basic" begin
@testset "mean(x)" begin
@gpu test_rrule(mean, randn(9))
test_rrule(mean, randn(ComplexF64,2,4))
test_rrule(mean, transpose(rand(3)))
test_rrule(mean, [rand(3) for _ in 1:4]; check_inferred=false)
end
@testset "with dims kwargs" begin
@gpu test_rrule(mean, randn(9); fkwargs=(;dims=1))
@gpu test_rrule(mean, randn(9,4); fkwargs=(;dims=2))
test_rrule(mean, [rand(2) for _ in 1:3, _ in 1:4]; fkwargs=(;dims=2), check_inferred=false)
end
@testset "mean(f, x)" begin
# This shares its implementation with sum(f, x). Similar tests should cover all cases:
test_rrule(mean, abs, [-4.0, 2.0, 2.0])
test_rrule(mean, log, rand(3, 4) .+ 1)
test_rrule(mean, cbrt, randn(5))
test_rrule(mean, Multiplier(2.0), [2.0, 4.0, 8.0]) # defined in test_helpers.jl
test_rrule(mean, Divider(1 + rand()), randn(5))

test_rrule(mean, sum, [[2.0, 4.0], [4.0,1.9]]; check_inferred=false)

test_rrule(mean, log, rand(ComplexF64, 5))
test_rrule(mean, sqrt, rand(ComplexF64, 5))
test_rrule(mean, abs, rand(ComplexF64, 3, 4))

test_rrule(mean, abs, [-2.0 4.0; 5.0 1.9]; fkwargs=(;dims=1))
test_rrule(mean, abs, [-2.0 4.0; 5.0 1.9]; fkwargs=(;dims=2))
test_rrule(mean, sqrt, rand(ComplexF64, 3, 4); fkwargs=(;dims=(1,)))
end

@testset "Regression Test against StatsBase-like Weighted Mean" begin
@eval struct DummyWeights <: AbstractVector{Float64} # DummyType that looks like StatsBase's Weights types
end
# This should return nothing as we have no rule for this. (we opted opt)
@test nothing == rrule(ChainRulesTestUtils.TestConfig(), mean, [1.0, 2.0], DummyWeights())
end
end

Expand Down
27 changes: 27 additions & 0 deletions test/test_helpers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,28 @@ function ChainRulesCore.rrule(m::Multiplier, y, z)
return m(y, z), Multiplier_pullback_3
end

"""
Divider(x)
Stores a fixed `x` and divides by it, then squares the result.
Especially for testing the gradient of higher order functions with respect to `x`.
```
julia> map(Divider(2), [1 2 3 4 10])
1×5 Matrix{Float64}:
0.25 1.0 2.25 4.0 25.0
```
"""
struct Divider{T<:Real}
x::T
end
(d::Divider)(y::Real) = (y / d.x)^2

function ChainRulesCore.rrule(d::Divider, y::Real)
Divider_pullback(dΩ) = (Tangent{typeof(d)}(; x = -2 ** y^2 / d.x^3), 2 ** y / d.x^2)
return d(y), Divider_pullback
end

"""
Counter()
Expand Down Expand Up @@ -198,6 +220,11 @@ ChainRulesCore.frule((_, Δx), ::typeof(flog), x::Number) = log(x), inv(x) * Δx
test_rrule(Multiplier(1.0 + 2im), 3.0 + 4im, 5.0 - 6im)
test_rrule(Multiplier(rand(2,3)), rand(3,4), rand(4,5))
end

@testset "Divider" begin
test_rrule(Divider(2.3), 4.5)
test_rrule(Divider(0.2), -3.4)
end

@testset "Counter" begin
c = Counter()
Expand Down

2 comments on commit 9a405f7

@oxinabox
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/74419

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v1.46.0 -m "<description of version>" 9a405f732758552cd945a110adb6828a997887a8
git push origin v1.46.0

Please sign in to comment.