Open
Description
julia> SemiclassicalJacobi(2.0, 3/2, 2.0, 1.0, SemiclassicalJacobi(2.0, -1/2, 1.0, -1/2))
ERROR: InterruptException:
Stacktrace:
[1] __broadcastarray2broadcasted(a::SubArray{…}, b::SubArray{…})
@ LazyArrays C:\Users\danjv\.julia\packages\LazyArrays\jaUBE\src\lazybroadcasting.jl:72
[2] _broadcastarray2broadcasted
@ C:\Users\danjv\.julia\packages\LazyArrays\jaUBE\src\lazybroadcasting.jl:73 [inlined]
[3] _broadcastarray2broadcasted
@ C:\Users\danjv\.julia\packages\LazyArrays\jaUBE\src\lazybroadcasting.jl:79 [inlined]
--- the last 3 lines are repeated 1 more time ---
[7] _broadcasted
@ C:\Users\danjv\.julia\packages\LazyArrays\jaUBE\src\lazybroadcasting.jl:80 [inlined]
[8] sub_materialize(::LazyArrays.BroadcastLayout{…}, A::SubArray{…})
@ LazyArrays C:\Users\danjv\.julia\packages\LazyArrays\jaUBE\src\lazybroadcasting.jl:97
[9] sub_materialize
@ C:\Users\danjv\.julia\packages\ArrayLayouts\31idh\src\ArrayLayouts.jl:132 [inlined]
[10] layout_getindex
@ C:\Users\danjv\.julia\packages\ArrayLayouts\31idh\src\ArrayLayouts.jl:138 [inlined]
[11] getindex
@ C:\Users\danjv\.julia\packages\ArrayLayouts\31idh\src\ArrayLayouts.jl:198 [inlined]
[12] _tritrunc(::ArrayLayouts.SymTridiagonalLayout{…}, X::LazyBandedMatrices.SymTridiagonal{…}, n::Int64)
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\ClassicalOrthogonalPolynomials.jl:160
[13] _tritrunc(X::LazyBandedMatrices.SymTridiagonal{…}, n::Int64)
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\ClassicalOrthogonalPolynomials.jl:163
[14] jacobimatrix_layout(lay::ClassicalOrthogonalPolynomials.NormalizedOPLayout{…}, P::Normalized{…}, n::Int64)
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\ClassicalOrthogonalPolynomials.jl:165
[15] jacobimatrix
@ C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\ClassicalOrthogonalPolynomials.jl:143 [inlined]
[16] grid_layout(::ClassicalOrthogonalPolynomials.NormalizedOPLayout{…}, P::Normalized{…}, n::Int64)
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\ClassicalOrthogonalPolynomials.jl:292
[17] grid
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:178 [inlined]
[18] plan_grid_transform
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:213 [inlined]
[19] _sub_factorize(::Tuple{…}, ::Tuple{…}, ::QuasiArrays.SubQuasiArray{…}; kws::@Kwargs{})
@ ContinuumArrays C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:241
[20] _sub_factorize
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:241 [inlined]
[21] _factorize
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:248 [inlined]
[22] factorize
@ C:\Users\danjv\.julia\packages\QuasiArrays\nTH6k\src\inv.jl:57 [inlined]
[23] _factorize(::ContinuumArrays.WeightedBasisLayout{…}, ::QuasiArrays.SubQuasiArray{…}; kws::@Kwargs{})
@ ContinuumArrays C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:350
[24] _factorize
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:350 [inlined]
[25] factorize
@ C:\Users\danjv\.julia\packages\QuasiArrays\nTH6k\src\inv.jl:57 [inlined]
[26] plan_ldiv
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:279 [inlined]
[27] transform_ldiv_size(::Tuple{…}, A::QuasiArrays.SubQuasiArray{…}, B::QuasiArrays.BroadcastQuasiVector{…})
@ ContinuumArrays C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:282
[28] transform_ldiv
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:283 [inlined]
[29] adaptivetransform_ldiv(A::ClassicalOrthogonalPolynomials.Weighted{…}, f::QuasiArrays.BroadcastQuasiVector{…})
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\adaptivetransform.jl:34
[30] transform_ldiv_size
@ C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\adaptivetransform.jl:2 [inlined]
[31] transform_ldiv
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:283 [inlined]
[32] basis_ldiv_size
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:332 [inlined]
[33] copy
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:323 [inlined]
[34] _broadcast_mul_ldiv
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:150 [inlined]
[35] copy
@ C:\Users\danjv\.julia\packages\ContinuumArrays\Py5Q6\src\bases\bases.jl:152 [inlined]
[36] materialize
@ C:\Users\danjv\.julia\packages\ArrayLayouts\31idh\src\ldiv.jl:22 [inlined]
[37] ldiv
@ C:\Users\danjv\.julia\packages\ArrayLayouts\31idh\src\ldiv.jl:98 [inlined]
[38] \
@ C:\Users\danjv\.julia\packages\QuasiArrays\nTH6k\src\matmul.jl:34 [inlined]
[39] LanczosPolynomial(w_in::QuasiArrays.BroadcastQuasiVector{…}, P::QuasiArrays.SubQuasiArray{…})
@ ClassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\ClassicalOrthogonalPolynomials\3YYrU\src\lanczos.jl:162
[40] semiclassical_jacobimatrix(t::Float64, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:161
[41] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:205
[42] SemiclassicalJacobi(t::Float64, a::Float64, b::Float64, c::Float64, P::SemiclassicalJacobi{Float64})
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:127
[43] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:217
[44] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:211
--- the last 2 lines are repeated 1488 more times ---
[3021] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:217
[3022] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64) (repeats 2 times)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:211
[3023] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:209
[3024] semiclassical_jacobimatrix(Q::SemiclassicalJacobi{Float64}, a::Float64, b::Float64, c::Float64) (repeats 2 times)
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:207
[3025] SemiclassicalJacobi(t::Float64, a::Float64, b::Float64, c::Float64, P::SemiclassicalJacobi{Float64})
@ SemiclassicalOrthogonalPolynomials C:\Users\danjv\.julia\packages\SemiclassicalOrthogonalPolynomials\GAsGB\src\SemiclassicalOrthogonalPolynomials.jl:127
Some type information was truncated. Use `show(err)` to see complete types.
Is there something obviously wrong with SemiclassicalJacobi(2.0, 3/2, 2.0, 1.0, SemiclassicalJacobi(2.0, -1/2, 1.0, -1/2))
? Print shows it's going back and forth between c
values
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^0.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^0.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^1.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^1.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^0.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^0.5 on 0..1
Q = SemiclassicalJacobi with weight x^1.5 * (1-x)^2.0 * (2.0-x)^1.5 on 0..1
Metadata
Metadata
Assignees
Labels
No labels