Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions src/semiseparable_arrowhead.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
struct SemiseparableBBBArrowheadMatrix{T} <: AbstractBlockBandedMatrix{T}
# banded parts
A::BandedMatrix{T}
B::NTuple{2,BandedMatrix{T}} # first row blocks
C::NTuple{4,BandedMatrix{T}} # first col blocks
D

# fill parts
Asub::NTuple{2,Vector{T}}
Asup::Tuple{2,Matrix{T}} # matrices are m × 2

Bsub::NTuple{2,Vector{T}}
Bsup::NTuple{2,NTuple{2,Vector{T}}}

Csub::NTuple{2,NTuple{2,Vector{T}}}
Csup::NTuple{2,Vector{T}}

A22sub::NTuple{2,Vector{T}}
A32sub::NTuple{2,Vector{T}}

A32extra::Vector{T}
A33extra::Vector{T}

D::DD # these are interlaces

end

axes(::SemiseparableBBBArrowheadMatrix) = ...

function getindex(L::SemiseparableBBBArrowheadMatrix{T}, Kk::BlockIndex{1}, Jj::BlockIndex{1})::T where T
K,k = block(Kk),blockindex(Kk)
J,j = block(Jj),blockindex(Jj)
# TODO: add getindex
end


function getindex(L::SemiseparableBBBArrowheadMatrix, k::Int, j::Int)
ax,bx = axes(L)
L[findblockindex(ax, k), findblockindex(bx, j)]
end

114 changes: 114 additions & 0 deletions test/explore_QL.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
using PiecewiseOrthogonalPolynomials, Plots, BlockArrays, Test
using MatrixFactorizations, LinearAlgebra, BlockBandedMatrices
###
# QL
####
function my_ql(A::BBBArrowheadMatrix{T}) where T
m,n = size(A.A)
l = length(A.D)
m2, n2 = size(A.D[1])
@assert m == n == l+1
@assert m2 == n2
#results stored in F and τ
F = BlockedArray(Matrix(A), axes(A))
τ = zeros(m+l*m2)
for j in m2:-1:3
for i in l:-1:1
upper_entry = F[Block(j-1, j+1)][i, i] #A.D[i][j-2,j]
dia_entry = F[Block(j+1, j+1)][i, i] #A.D[i][j,j]
#perform Householder transformation
dia_entry_new = -sign(dia_entry)*sqrt(dia_entry^2 + upper_entry^2)
v = [upper_entry, dia_entry-dia_entry_new]
coef = 2/(v[1]^2+v[2]^2)
#denote the householder transformation as [c1 s1;c2 s2]
c1 = 1 - coef * v[1]^2
s1 = - coef * v[1] * v[2]
c2 = s1
s2 = 1 - coef * v[2]^2
print(dia_entry_new)
F[m+(j-1)*l+i, m+(j-1)*l+i] = dia_entry_new #update F[Block(j+1, j+1)][i, i]
F[m+(j-3)*l+i, m+(j-1)*l+i] = v[1]/v[2] #update F[Block(j-1, j+1)][i, i]
τ[m+(j-1)*l+i] = coef*v[2]^2
#row recombination(householder transformation) for other columns
current_upper_entry = F[Block(j-1, j-1)][i, i] #A.D[i][j-2,j-2]
current_lower_entry = F[Block(j+1, j-1)][i, i] #A.D[i][j,j-2]
F[m+(j-3)*l+i, m+(j-3)*l+i] = c1 * current_upper_entry + s1 * current_lower_entry #update F[Block(j-1, j-1)][i, i]
F[m+(j-1)*l+i, m+(j-3)*l+i] = c2 * current_upper_entry + s2 * current_lower_entry #update F[Block(j+1, j-1)][i, i]
if j >= 5
#Deal with A.D blocks which do not share common rows with A.C
current_entry = F[Block(j-1, j-3)][i, i] #A.D[i][j-2,j-4]
F[m+(j-3)*l+i, m+(j-5)*l+i] = c1 * current_entry #update F[Block(j-1, j-3)][i, i]
F[m+(j-1)*l+i, m+(j-5)*l+i] = c2 * current_entry #update F[Block(j+1, j-3)][i, i]
else
#Deal with A.D blocks which share common rows with A.C
current_entry = F[Block(j-1, 1)][i, i] #A.C[j-2][i,i]
F[m+(j-3)*l+i, i] = c1 * current_entry #update F[Block(j-1, 1)][i, i]
F[m+(j-1)*l+i, i] = c2 * current_entry #update F[Block(j+1, 1)][i, i]

current_entry = F[Block(j-1, 1)][i, i+1] #A.C[j-2][i,i+1]
F[m+(j-3)*l+i, i+1] = c1 * current_entry #update F[Block(j-1, 1)][i, i+1]
F[m+(j-1)*l+i, i+1] = c2 * current_entry #F[Block(j+1, 1)][i, i+1]
end
end
end

#Deal with Block(1,3)
#vectors x and Λ denote a rank 1 semiseperable matrix
λ = 1.0
Λ = []
x = [F[Block(1,3)][l+1,l]]
x_len = abs(x[1])
for i in l:-1:2 #consider i=1 later
a = F[Block(1,3)][i,i]
b = F[Block(1,3)][i,i-1]
c = F[Block(3,3)][i,i]
v_last = c + sign(c) * sqrt(a^2 + λ^2 * x_len^2 + c^2)
v_len = sqrt(a^2 + λ^2 * x_len^2 + v_last^2)
F[m+l+i,m+l+i] = -sign(c) * sqrt(a^2 + λ^2 * x_len^2 + c^2)
pushfirst!(Λ, λ / v_last)
λ = -2/v_len^2 * a * b * λ
F[m+l+i, m+l+i-1] = -2/v_len^2 * v_last * a * b
x_first = (1 - 2/v_len^2 * a^2) * b / λ
pushfirst!(x, x_first)
x_len = sqrt(x_len^2 + x_first^2)
#record information of V
F[i+1, m+l+i] = 0
F[i, m+l+i] = a / v_last
τ[m+l+i] = 2 * v_last^2 / v_len^2
end
#deal with the last column in Block(1,3)
a = F[Block(1,3)][1,1]
c = F[Block(3,3)][1,1]
v_last = c + sign(c) * sqrt(a^2 + λ^2 * x_len^2 + c^2)
v_len = sqrt(a^2 + λ^2 * x_len^2 + v_last^2)
pushfirst!(Λ, λ / v_last)
F[m+l+1,m+l+1] = -sign(c) * sqrt(a^2 + λ^2 * x_len^2 + c^2)
F[2, m+l+1] = 0
F[1, m+l+1] = a / v_last
τ[m+l+1] = 2 * v_last^2 / v_len^2

F, τ, x, Λ
end


𝐗 = range(-1,1; length=10)
C = ContinuousPolynomial{1}(𝐗)
plot(C[:,Block(2)])

#plot(C[:,Block.(2:3)])
M = C'C
#M = grammatrix(C)
Δ = weaklaplacian(C)
N = 6
KR = Block.(Base.OneTo(N))
Mₙ = M[KR,KR]
Δₙ = Δ[KR,KR]
A = Δₙ + 100^2 * Mₙ
FF,tτ, xx, LΛ = my_ql(A)
τ = ql(A).τ
f = ql(A).factors

@test BlockedArray(tτ, (axes(A,2),))[Block.(3:6)] ≈ BlockedArray(τ, (axes(A,2),))[Block.(3:6)]
@test f[:,Block.(4:6)] ≈ FF[:,Block.(4:6)]

@test tril(xx * LΛ') + FF[Block(1,3)][2:end,:] ≈ f[Block(1,3)][2:end,:]
Loading