Skip to content

Projet réalisé dans le cadre de la formation AI for Healthcare (Udacity). Il vise à détecter efficacement les cas de pneumonie à partir d’images radiologiques DICOM, en combinant des techniques de NLP médical, deep learning, et optimisation de modèle. L’objectif principal est de maximiser le rappel (recall) pour limiter les faux négatifs.

Jujulis18/PneumoDetect-Pro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

PneumoDetect Pro

(Project during AI for Healhcare - Udacity)

Objective:

Quickly and effectively identify positive pneumonia cases from radiological images (DICOM) using a machine learning model. ​

Key Steps:

Data Preprocessing: Verify DICOM data and generate ground truth for 14 common thoracic pathologies using NLP. ​ Data Augmentation: Normalize and split data into validation and training sets. ​ Model Building: Use a pre-trained model, adjust parameters, and build a custom model. ​ Training and Optimization: Compile the model, train with callbacks, and save the best weights. ​ Validation and Deployment: Evaluate performance, make predictions, and save the final model. ​

Key Results:

Classification Threshold: Set at 0.40 to maximize true positives. ​ Performance Metrics: ​

Accuracy: 0.452 ​ Precision: 0.310 ​ Recall: 0.692 ​ F1 Score: 0.429 ​

The model prioritizes high recall to capture as many positive pneumonia cases as possible, sacrificing precision. ​

This project emphasizes detecting pneumonia cases with a focus on minimizing false negatives.

See the report for more details.​

image

image

About

Projet réalisé dans le cadre de la formation AI for Healthcare (Udacity). Il vise à détecter efficacement les cas de pneumonie à partir d’images radiologiques DICOM, en combinant des techniques de NLP médical, deep learning, et optimisation de modèle. L’objectif principal est de maximiser le rappel (recall) pour limiter les faux négatifs.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published