Skip to content

2023-05-25-dependency_parse_en #13828

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
120 commits
Select commit Hold shift + click to select a range
bc9c8e6
Add model 2023-05-25-dependency_parse_en
ahmedlone127 May 25, 2023
ec96866
Add model 2023-05-25-explain_document_md_it
ahmedlone127 May 25, 2023
edab722
Add model 2023-05-25-entity_recognizer_lg_fr
ahmedlone127 May 25, 2023
285b37f
Add model 2023-05-25-entity_recognizer_md_fr
ahmedlone127 May 25, 2023
d075932
Add model 2023-05-25-entity_recognizer_lg_it
ahmedlone127 May 25, 2023
adb8c7d
Add model 2023-05-25-entity_recognizer_md_it
ahmedlone127 May 25, 2023
960202d
Add model 2023-05-25-check_spelling_en
ahmedlone127 May 25, 2023
f8c134c
Add model 2023-05-25-match_datetime_en
ahmedlone127 May 25, 2023
568b617
Add model 2023-05-25-match_pattern_en
ahmedlone127 May 25, 2023
0c9b0ca
Add model 2023-05-25-clean_pattern_en
ahmedlone127 May 25, 2023
fd91900
Add model 2023-05-25-clean_stop_en
ahmedlone127 May 25, 2023
f5e306e
Add model 2023-05-25-movies_sentiment_analysis_en
ahmedlone127 May 25, 2023
db58973
Add model 2023-05-25-explain_document_ml_en
ahmedlone127 May 25, 2023
c2fb304
Add model 2023-05-25-analyze_sentiment_en
ahmedlone127 May 25, 2023
6e9f8b7
Add model 2023-05-25-explain_document_dl_en
ahmedlone127 May 25, 2023
c13292e
Add model 2023-05-25-recognize_entities_dl_en
ahmedlone127 May 25, 2023
63082c0
Add model 2023-05-25-recognize_entities_bert_en
ahmedlone127 May 25, 2023
afcb002
Add model 2023-05-25-explain_document_md_de
ahmedlone127 May 25, 2023
a28d47c
Add model 2023-05-25-entity_recognizer_lg_de
ahmedlone127 May 25, 2023
2e9d13e
Add model 2023-05-25-entity_recognizer_md_de
ahmedlone127 May 25, 2023
64e0cb9
Add model 2023-05-25-onto_recognize_entities_sm_en
ahmedlone127 May 25, 2023
308c865
Add model 2023-05-25-onto_recognize_entities_lg_en
ahmedlone127 May 25, 2023
40132d0
Add model 2023-05-25-match_chunks_en
ahmedlone127 May 25, 2023
8add1c5
Add model 2023-05-25-explain_document_lg_es
ahmedlone127 May 25, 2023
7d9cc73
Add model 2023-05-25-explain_document_md_es
ahmedlone127 May 25, 2023
6b99883
Add model 2023-05-25-explain_document_sm_es
ahmedlone127 May 25, 2023
1b43822
Add model 2023-05-25-entity_recognizer_lg_es
ahmedlone127 May 25, 2023
70bac99
Add model 2023-05-25-entity_recognizer_md_es
ahmedlone127 May 25, 2023
0541b76
Add model 2023-05-25-entity_recognizer_sm_es
ahmedlone127 May 25, 2023
b499512
Add model 2023-05-25-explain_document_lg_ru
ahmedlone127 May 25, 2023
6c22d64
Add model 2023-05-25-explain_document_md_ru
ahmedlone127 May 25, 2023
b2f5fd8
Add model 2023-05-25-explain_document_sm_ru
ahmedlone127 May 25, 2023
2d611be
Add model 2023-05-25-entity_recognizer_lg_ru
ahmedlone127 May 25, 2023
040b8b3
Add model 2023-05-25-entity_recognizer_md_ru
ahmedlone127 May 25, 2023
96efc6e
Add model 2023-05-25-entity_recognizer_sm_ru
ahmedlone127 May 25, 2023
195b902
Add model 2023-05-25-text_cleaning_en
ahmedlone127 May 25, 2023
52a0321
Add model 2023-05-25-explain_document_lg_pt
ahmedlone127 May 25, 2023
9308a6c
Add model 2023-05-25-explain_document_md_pt
ahmedlone127 May 25, 2023
a04f4c2
Add model 2023-05-25-explain_document_sm_pt
ahmedlone127 May 25, 2023
8de8d54
Add model 2023-05-25-entity_recognizer_lg_pt
ahmedlone127 May 25, 2023
fd63216
Add model 2023-05-25-entity_recognizer_md_pt
ahmedlone127 May 25, 2023
d7cff1e
Add model 2023-05-25-entity_recognizer_sm_pt
ahmedlone127 May 25, 2023
76ec274
Add model 2023-05-25-explain_document_lg_pl
ahmedlone127 May 25, 2023
04f0644
Add model 2023-05-25-explain_document_md_pl
ahmedlone127 May 25, 2023
9534c77
Add model 2023-05-25-explain_document_sm_pl
ahmedlone127 May 25, 2023
28c09e0
Add model 2023-05-25-entity_recognizer_lg_pl
ahmedlone127 May 25, 2023
0a520b6
Add model 2023-05-25-entity_recognizer_md_pl
ahmedlone127 May 25, 2023
0d8d656
Add model 2023-05-25-entity_recognizer_sm_pl
ahmedlone127 May 25, 2023
0c469fb
Add model 2023-05-25-explain_document_lg_nl
ahmedlone127 May 25, 2023
78bd777
Add model 2023-05-25-explain_document_md_nl
ahmedlone127 May 25, 2023
af8b558
Add model 2023-05-25-explain_document_sm_nl
ahmedlone127 May 25, 2023
65bfaec
Add model 2023-05-25-entity_recognizer_lg_nl
ahmedlone127 May 25, 2023
83e0f28
Add model 2023-05-25-entity_recognizer_md_nl
ahmedlone127 May 25, 2023
31bf751
Add model 2023-05-25-entity_recognizer_sm_nl
ahmedlone127 May 25, 2023
fde4eda
Add model 2023-05-25-analyze_sentimentdl_glove_imdb_en
ahmedlone127 May 25, 2023
88ecbe5
Add model 2023-05-25-explain_document_lg_no
ahmedlone127 May 25, 2023
a950d64
Add model 2023-05-25-explain_document_md_no
ahmedlone127 May 25, 2023
67da919
Add model 2023-05-25-explain_document_sm_no
ahmedlone127 May 25, 2023
eefff16
Add model 2023-05-25-entity_recognizer_lg_no
ahmedlone127 May 25, 2023
89da7b5
Add model 2023-05-25-entity_recognizer_md_no
ahmedlone127 May 25, 2023
23d0ada
Add model 2023-05-25-entity_recognizer_sm_no
ahmedlone127 May 25, 2023
6b53ec9
Add model 2023-05-25-explain_document_lg_sv
ahmedlone127 May 25, 2023
c5352bb
Add model 2023-05-25-explain_document_md_sv
ahmedlone127 May 25, 2023
b0cd84f
Add model 2023-05-25-explain_document_sm_sv
ahmedlone127 May 25, 2023
6181418
Add model 2023-05-25-entity_recognizer_lg_sv
ahmedlone127 May 25, 2023
9d3309c
Add model 2023-05-25-entity_recognizer_md_sv
ahmedlone127 May 25, 2023
d7bc0fb
Add model 2023-05-25-entity_recognizer_sm_sv
ahmedlone127 May 25, 2023
3830e0c
Add model 2023-05-25-explain_document_lg_da
ahmedlone127 May 25, 2023
1845070
Add model 2023-05-25-explain_document_md_da
ahmedlone127 May 25, 2023
33885c0
Add model 2023-05-25-explain_document_sm_da
ahmedlone127 May 25, 2023
0f36ae8
Add model 2023-05-25-entity_recognizer_lg_da
ahmedlone127 May 25, 2023
8bd3ea2
Add model 2023-05-25-entity_recognizer_md_da
ahmedlone127 May 25, 2023
bb95965
Add model 2023-05-25-entity_recognizer_sm_da
ahmedlone127 May 25, 2023
da3df6d
Add model 2023-05-25-explain_document_lg_fi
ahmedlone127 May 25, 2023
09caf00
Add model 2023-05-25-explain_document_md_fi
ahmedlone127 May 25, 2023
ae86c33
Add model 2023-05-25-explain_document_sm_fi
ahmedlone127 May 25, 2023
a77aa25
Add model 2023-05-25-entity_recognizer_lg_fi
ahmedlone127 May 25, 2023
595a565
Add model 2023-05-25-entity_recognizer_md_fi
ahmedlone127 May 25, 2023
bcd3438
Add model 2023-05-25-entity_recognizer_sm_fi
ahmedlone127 May 25, 2023
e593c7a
Add model 2023-05-25-onto_recognize_entities_bert_base_en
ahmedlone127 May 25, 2023
b0d214b
Add model 2023-05-25-onto_recognize_entities_bert_large_en
ahmedlone127 May 25, 2023
d936735
Add model 2023-05-25-onto_recognize_entities_bert_medium_en
ahmedlone127 May 25, 2023
574c27d
Add model 2023-05-25-onto_recognize_entities_bert_mini_en
ahmedlone127 May 25, 2023
31210d0
Add model 2023-05-25-onto_recognize_entities_bert_small_en
ahmedlone127 May 25, 2023
7a0469c
Add model 2023-05-25-onto_recognize_entities_bert_tiny_en
ahmedlone127 May 25, 2023
381e1ab
Add model 2023-05-25-onto_recognize_entities_electra_base_en
ahmedlone127 May 25, 2023
0631283
Add model 2023-05-25-onto_recognize_entities_electra_small_en
ahmedlone127 May 25, 2023
775621c
Add model 2023-05-25-onto_recognize_entities_electra_large_en
ahmedlone127 May 25, 2023
6f76c55
Add model 2023-05-26-recognize_entities_dl_fa
ahmedlone127 May 26, 2023
0dec05b
Add model 2023-05-26-nerdl_fewnerd_subentity_100d_pipeline_en
ahmedlone127 May 26, 2023
56f1909
Add model 2023-05-26-nerdl_fewnerd_100d_pipeline_en
ahmedlone127 May 26, 2023
7f9a893
Add model 2023-05-26-pos_ud_bokmaal_nb
ahmedlone127 May 26, 2023
9c53e76
Add model 2023-05-26-xlm_roberta_large_token_classifier_masakhaner_pi…
ahmedlone127 May 26, 2023
6b8988f
Add model 2023-05-26-bert_token_classifier_scandi_ner_pipeline_xx
ahmedlone127 May 26, 2023
3046c2a
Add model 2023-05-26-bert_sequence_classifier_trec_coarse_pipeline_en
ahmedlone127 May 26, 2023
ed0e96a
Add model 2023-05-26-bert_sequence_classifier_age_news_pipeline_en
ahmedlone127 May 26, 2023
9686887
Add model 2023-05-26-distilbert_token_classifier_typo_detector_pipeli…
ahmedlone127 May 26, 2023
1e488b1
Add model 2023-05-26-distilbert_base_token_classifier_masakhaner_pipe…
ahmedlone127 May 26, 2023
6dbb0bd
Add model 2023-05-26-nerdl_restaurant_100d_pipeline_en
ahmedlone127 May 26, 2023
41f2f79
Add model 2023-05-26-roberta_token_classifier_timex_semeval_pipeline_en
ahmedlone127 May 26, 2023
66cce63
Add model 2023-05-26-bert_token_classifier_hi_en_ner_pipeline_hi
ahmedlone127 May 26, 2023
c840778
Add model 2023-05-26-xlm_roberta_large_token_classifier_hrl_pipeline_xx
ahmedlone127 May 26, 2023
dc72437
Add model 2023-05-26-spellcheck_dl_pipeline_en
ahmedlone127 May 26, 2023
90f10de
Add model 2023-05-26-bert_token_classifier_dutch_udlassy_ner_pipeline_nl
ahmedlone127 May 26, 2023
798b21c
Add model 2023-05-26-xlm_roberta_large_token_classifier_conll03_pipel…
ahmedlone127 May 26, 2023
44de0db
Add model 2023-05-26-roberta_token_classifier_bne_capitel_ner_pipelin…
ahmedlone127 May 26, 2023
7db9c0a
Add model 2023-05-26-roberta_token_classifier_icelandic_ner_pipeline_is
ahmedlone127 May 26, 2023
f70d3b8
Add model 2023-05-26-longformer_base_token_classifier_conll03_pipelin…
ahmedlone127 May 26, 2023
05cb129
Add model 2023-05-26-longformer_large_token_classifier_conll03_pipeli…
ahmedlone127 May 26, 2023
fb30306
Add model 2023-05-26-xlnet_base_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
b3231cf
Add model 2023-05-26-xlm_roberta_base_token_classifier_ontonotes_pipe…
ahmedlone127 May 26, 2023
73164bf
Add model 2023-05-26-xlm_roberta_base_token_classifier_conll03_pipeli…
ahmedlone127 May 26, 2023
e388093
Add model 2023-05-26-xlnet_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
a02b2f2
Add model 2023-05-26-albert_base_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
1e7133e
Add model 2023-05-26-albert_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
d4837eb
Add model 2023-05-26-albert_xlarge_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
daa9c1d
Add model 2023-05-26-distilroberta_base_token_classifier_ontonotes_pi…
ahmedlone127 May 26, 2023
7afd705
Add model 2023-05-26-roberta_base_token_classifier_ontonotes_pipeline_en
ahmedlone127 May 26, 2023
3397992
Add model 2023-05-26-roberta_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 26, 2023
7997d8c
Add model 2023-05-26-distilbert_token_classifier_typo_detector_pipeli…
ahmedlone127 May 26, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-25-analyze_sentiment_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
---
layout: model
title: Sentiment Analysis pipeline for English
author: John Snow Labs
name: analyze_sentiment
date: 2023-05-25
tags: [open_source, english, analyze_sentiment, pipeline, en]
task: Named Entity Recognition
language: en
edition: Spark NLP 4.4.2
spark_version: 3.4
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The analyze_sentiment is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
and recognizes entities .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.4_1685040876208.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.4_1685040876208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")


```
```scala

import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")

```

{:.nlu-block}
```python

import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df

```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```
```scala
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```

{:.nlu-block}
```python
import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df
```
</div>

## Results

```bash
Results


| | text | sentiment |
|---:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
| 0 | Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now! | positive |


{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|analyze_sentiment|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|5.1 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- NorvigSweetingModel
- ViveknSentimentModel
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
---
layout: model
title: Sentiment Analysis pipeline for English (analyze_sentimentdl_glove_imdb)
author: John Snow Labs
name: analyze_sentimentdl_glove_imdb
date: 2023-05-25
tags: [open_source, english, analyze_sentimentdl_glove_imdb, pipeline, en]
task: Named Entity Recognition
language: en
edition: Spark NLP 4.4.2
spark_version: 3.4
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The analyze_sentimentdl_glove_imdb is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
and recognizes entities .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/analyze_sentimentdl_glove_imdb_en_4.4.2_3.4_1685051273135.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/analyze_sentimentdl_glove_imdb_en_4.4.2_3.4_1685051273135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('analyze_sentimentdl_glove_imdb', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()

```
```scala

val pipeline = new PretrainedPipeline("analyze_sentimentdl_glove_imdb", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)


```

{:.nlu-block}
```python

import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('en.sentiment.glove').predict(text)
result_df

```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('analyze_sentimentdl_glove_imdb', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()
```
```scala
val pipeline = new PretrainedPipeline("analyze_sentimentdl_glove_imdb", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)
```

{:.nlu-block}
```python
import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('en.sentiment.glove').predict(text)
result_df
```
</div>

## Results

```bash
Results


| | document | sentence | tokens | word_embeddings | sentence_embeddings | sentiment |
|---:|:---------------------------------|:--------------------------------|:-----------------------------------------------|:-----------------------------|:-----------------------------|:------------|
| 0 | ['Hello from John Snow Labs ! '] | ['Hello from John Snow Labs !'] | ['Hello', 'from', 'John', 'Snow', 'Labs', '!'] | [[0.2668800055980682,.,...]] | [[0.0771183446049690,.,...]] | ['neg'] |


{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|analyze_sentimentdl_glove_imdb|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|161.6 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- WordEmbeddingsModel
- SentenceEmbeddings
- SentimentDLModel
120 changes: 120 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-25-check_spelling_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
---
layout: model
title: Spell Checking Pipeline for English
author: John Snow Labs
name: check_spelling
date: 2023-05-25
tags: [open_source, english, check_spelling, pipeline, en]
task: Spell Check
language: en
edition: Spark NLP 4.4.2
spark_version: 3.4
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The check_spelling is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
and recognizes entities .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/check_spelling_en_4.4.2_3.4_1685039983204.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/check_spelling_en_4.4.2_3.4_1685039983204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('check_spelling', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()

```
```scala

val pipeline = new PretrainedPipeline("check_spelling", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)


```

{:.nlu-block}
```python

import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('').predict(text)
result_df

```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('check_spelling', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()
```
```scala
val pipeline = new PretrainedPipeline("check_spelling", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)
```

{:.nlu-block}
```python
import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('').predict(text)
result_df
```
</div>

## Results

```bash
Results


| | document | sentence | token | checked |
|---:|:---------------------------------|:--------------------------------|:-----------------------------------------------|:-----------------------------------------------|
| 0 | ['I liek to live dangertus ! '] | ['I liek to live dangertus !'] | ['I', 'liek', 'to', 'live', 'dangertus', '!'] | ['I', 'like', 'to', 'live', 'dangerous', '!'] |


{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|check_spelling|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|906.2 KB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- NorvigSweetingModel
Loading