Skip to content

2023-02-09-rxnorm_drug_brandname_mapper_en #13493

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 148 additions & 0 deletions docs/_posts/Ahmetemintek/2023-02-09-rxnorm_drug_brandname_mapper_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
---
layout: model
title: Mapping RxNorm and RxNorm Extension Codes with Corresponding Drug Brand Names
author: John Snow Labs
name: rxnorm_drug_brandname_mapper
date: 2023-02-09
tags: [chunk_mappig, rxnorm, drug_brand_name, rxnorm_extension, en, clinical, licensed]
task: Chunk Mapping
language: en
edition: Healthcare NLP 4.3.0
spark_version: 3.0
supported: true
annotator: ChunkMapperModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This pretrained model maps RxNorm and RxNorm Extension codes with their corresponding drug brand names. It returns 2 types of brand names for the corresponding RxNorm or RxNorm Extension code.

## Predicted Entities

`rxnorm_brandname`, `rxnorm_extension_brandname`

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
[Open in Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/26.Chunk_Mapping.ipynb){:.button.button-orange.button-orange-trans.co.button-icon}
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/clinical/models/rxnorm_drug_brandname_mapper_en_4.3.0_3.0_1675966478332.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/clinical/models/rxnorm_drug_brandname_mapper_en_4.3.0_3.0_1675966478332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("chunk")

sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli", "en","clinical/models")\
.setInputCols(["chunk"])\
.setOutputCol("sbert_embeddings")

rxnorm_resolver = SentenceEntityResolverModel\
.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")\
.setInputCols(["chunk", "sbert_embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")

resolver2chunk = Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("rxnorm_chunk")\

chunkerMapper = ChunkMapperModel.pretrained("rxnorm_drug_brandname_mapper", "en", "clinical/models")\
.setInputCols(["rxnorm_chunk"])\
.setOutputCol("mappings")\
.setRels(["rxnorm_brandname", "rxnorm_extension_brandname"])


pipeline = Pipeline(
stages = [
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk,
chunkerMapper
])

model = pipeline.fit(spark.createDataFrame([['']]).toDF('text'))

pipeline = LightPipeline(model)

result = pipeline.fullAnnotate(['metformin', 'advil'])

```
```scala
val documentAssembler = new DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("chunk")

val sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli", "en","clinical/models")\
.setInputCols(["chunk"])\
.setOutputCol("sbert_embeddings")

val rxnorm_resolver = SentenceEntityResolverModel\
.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")\
.setInputCols(["chunk", "sbert_embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")

val resolver2chunk = new Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("rxnorm_chunk")\

val chunkerMapper = ChunkMapperModel.pretrained("rxnorm_drug_brandname_mapper", "en", "clinical/models")\
.setInputCols(["rxnorm_chunk"])\
.setOutputCol("mappings")\
.setRels(["rxnorm_brandname", "rxnorm_extension_brandname"])



val pipeline = new Pipeline(stages = Array(
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk
chunkerMapper
))

val data = Seq(Array("metformin", "advil")).toDS.toDF("text")

val result= pipeline.fit(data).transform(data)

```
</div>

## Results

```bash
+--------------+-------------+--------------------------------------------------+--------------------------+
| drug_name|rxnorm_result| mapping_result| relation |
+--------------+-------------+--------------------------------------------------+--------------------------+
| metformin| 6809|Actoplus Met (metformin):::Avandamet (metformin...| rxnorm_brandname|
| metformin| 6809|A FORMIN (metformin):::ABERIN MAX (metformin)::...|rxnorm_extension_brandname|
| advil| 153010| Advil (Advil)| rxnorm_brandname|
| advil| 153010| NONE|rxnorm_extension_brandname|
+--------------+-------------+--------------------------------------------------+--------------------------+
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|rxnorm_drug_brandname_mapper|
|Compatibility:|Healthcare NLP 4.3.0+|
|License:|Licensed|
|Edition:|Official|
|Input Labels:|[rxnorm_chunk]|
|Output Labels:|[mappings]|
|Language:|en|
|Size:|4.0 MB|