Skip to content

2022-10-25-legner_indian_court_judgement_en #12986

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
---
layout: model
title: Legal NER for Indian Court Documents
author: John Snow Labs
name: legner_indian_court_judgement
date: 2022-10-25
tags: [en, legal, ner, licensed]
task: Named Entity Recognition
language: en
edition: Spark NLP for Legal 1.0.0
spark_version: 3.0
supported: true
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This is an NER model trained on Indian court dataset, aimed to extract the following entities from judgement documents.

## Predicted Entities

`COURT`, `PETITIONER`, `RESPONDENT`, `JUDGE`, `DATE`, `ORG`, `GPE`, `STATUTE`, `PROVISION`, `PRECEDENT`, `CASE_NUMBER`, `WITNESS`, `OTHER_PERSON`

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/legal/models/legner_indian_court_judgement_en_1.0.0_3.0_1666698501448.zip){:.button.button-orange.button-orange-trans.arr.button-icon}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python
document_assembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")\
.setCleanupMode("shrink")

sentence_detector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")\
.setInputCols(["document"])\
.setOutputCol("sentence")\

tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")

embeddings = nlp.BertEmbeddings.pretrained("bert_base_cased", "en")\
.setInputCols("sentence", "token")\
.setOutputCol("embeddings")\
.setMaxSentenceLength(512)\
.setCaseSensitive(True)

ner_model = legal.NerModel.pretrained("legner_indian_court_judgement", "en", "legal/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")\

ner_converter = nlp.NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")

pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter
])

model = pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

data = spark.createDataFrame([["""Let fresh bailable warrant of Rs.20,000/- (Rupees Twenty Thousand) be issued through Superintendent of Police, Dhar to the respondents No.1 Sikandar and No.2 Aziz for a date to be fixed by the Registry to secure the presence of the respondents No.1 and 2, made returnable within six weeks.
P.K.Jaiswal) Judge
(Jarat Kumar Jain) Judge ns.
W.P.No.1361/2013
14/12/2015
Parties through their Counsel."""]]

result = model.transform(data)
```
```scala
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
.setCleanupMode("shrink")

val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "en")
.setInputCols("document")
.setOutputCol("sentence")

val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")

val embeddings = BertEmbeddings.pretrained("bert_base_cased", "en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
.setMaxSentenceLength(512)
.setCaseSensitive(True)

val ner_model = NerModel.pretrained("legner_indian_court_judgement", "en", "legal/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")

val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")

val pipeline = new PipelineModel().setStages(Array(
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter))

val data = Seq("""Let fresh bailable warrant of Rs.20,000/- (Rupees Twenty Thousand) be issued through Superintendent of Police, Dhar to the respondents No.1 Sikandar and No.2 Aziz for a date to be fixed by the Registry to secure the presence of the respondents No.1 and 2, made returnable within six weeks.
P.K.Jaiswal) Judge
(Jarat Kumar Jain) Judge ns.
W.P.No.1361/2013
14/12/2015
Parties through their Counsel.""").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

## Results

```bash
+----------------+-----------+
|ticker |label |
+----------------+-----------+
|Dhar |GPE |
|Sikandar |RESPONDENT |
|Aziz |RESPONDENT |
|P.K.Jaiswal |JUDGE |
|Jarat Kumar Jain|JUDGE |
|W.P.No.1361/2013|CASE_NUMBER|
|14/12/2015 |DATE |
+----------------+-----------+
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|legner_indian_court_judgement|
|Compatibility:|Spark NLP for Legal 1.0.0+|
|License:|Licensed|
|Edition:|Official|
|Input Labels:|[sentence, token, embeddings]|
|Output Labels:|[ner]|
|Language:|en|
|Size:|16.4 MB|

## References

Training data is available [here](https://github.com/Legal-NLP-EkStep/legal_NER#3-data).

## Benchmarking

```bash
| label | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| CASE_NUMBER | 0.83 | 0.80 | 0.82 | 112 |
| COURT | 0.92 | 0.94 | 0.93 | 140 |
| DATE | 0.97 | 0.97 | 0.97 | 204 |
| GPE | 0.81 | 0.75 | 0.78 | 95 |
| JUDGE | 0.84 | 0.86 | 0.85 | 57 |
| ORG | 0.75 | 0.76 | 0.76 | 131 |
| OTHER_PERSON | 0.83 | 0.90 | 0.86 | 241 |
| PETITIONER | 0.76 | 0.61 | 0.68 | 36 |
| PRECEDENT | 0.84 | 0.84 | 0.84 | 127 |
| PROVISION | 0.90 | 0.94 | 0.92 | 220 |
| RESPONDENT | 0.64 | 0.70 | 0.67 | 23 |
| STATUTE | 0.92 | 0.96 | 0.94 | 157 |
| WITNESS | 0.93 | 0.78 | 0.85 | 87 |
| micro-avg | 0.87 | 0.87 | 0.87 | 1630 |
| macro-avg | 0.84 | 0.83 | 0.83 | 1630 |
| weighted-avg | 0.87 | 0.87 | 0.87 | 1630 |
```