-
Notifications
You must be signed in to change notification settings - Fork 720
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2023-09-21-multilingual_e5_base_xx (#14002)
* Add model 2023-09-21-multilingual_e5_base_xx * Add model 2023-09-21-multilingual_e5_large_xx * Add model 2023-09-21-multilingual_e5_small_xx --------- Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
- Loading branch information
1 parent
d4bd550
commit 00e0a8d
Showing
3 changed files
with
300 additions
and
0 deletions.
There are no files selected for viewing
100 changes: 100 additions & 0 deletions
100
docs/_posts/ahmedlone127/2023-09-21-multilingual_e5_base_xx.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
--- | ||
layout: model | ||
title: Multilingual multilingual_e5_base XlmRoBertaSentenceEmbeddings from intfloat | ||
author: John Snow Labs | ||
name: multilingual_e5_base | ||
date: 2023-09-21 | ||
tags: [xlm_roberta, xx, open_source, tensorflow] | ||
task: Embeddings | ||
language: xx | ||
edition: Spark NLP 5.1.2 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: XlmRoBertaSentenceEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained XlmRoBertaSentenceEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multilingual_e5_base` is a Multilingual model originally trained by intfloat. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multilingual_e5_base_xx_5.1.2_3.0_1695314944172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multilingual_e5_base_xx_5.1.2_3.0_1695314944172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("sentence") | ||
|
||
embeddings =XlmRoBertaSentenceEmbeddings.pretrained("multilingual_e5_base","xx") \ | ||
.setInputCols(["sentence"]) \ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline().setStages([document_assembler, sentencerDL, embeddings]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") | ||
.setInputCols(["document"]) | ||
.setOutputCol("sentence") | ||
|
||
val embeddings = XlmRoBertaSentenceEmbeddings | ||
.pretrained("multilingual_e5_base", "xx") | ||
.setInputCols(Array("sentence")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, sentencerDL, embeddings)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|multilingual_e5_base| | ||
|Compatibility:|Spark NLP 5.1.2+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence]| | ||
|Output Labels:|[embeddings]| | ||
|Language:|xx| | ||
|Size:|667.1 MB| | ||
|
||
## References | ||
|
||
https://huggingface.co/intfloat/multilingual-e5-base |
100 changes: 100 additions & 0 deletions
100
docs/_posts/ahmedlone127/2023-09-21-multilingual_e5_large_xx.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
--- | ||
layout: model | ||
title: Multilingual multilingual_e5_large XlmRoBertaSentenceEmbeddings from intfloat | ||
author: John Snow Labs | ||
name: multilingual_e5_large | ||
date: 2023-09-21 | ||
tags: [xlm_roberta, xx, open_source, tensorflow] | ||
task: Embeddings | ||
language: xx | ||
edition: Spark NLP 5.1.2 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: XlmRoBertaSentenceEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained XlmRoBertaSentenceEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multilingual_e5_large` is a Multilingual model originally trained by intfloat. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multilingual_e5_large_xx_5.1.2_3.0_1695315223158.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multilingual_e5_large_xx_5.1.2_3.0_1695315223158.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("sentence") | ||
|
||
embeddings =XlmRoBertaSentenceEmbeddings.pretrained("multilingual_e5_large","xx") \ | ||
.setInputCols(["sentence"]) \ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline().setStages([document_assembler, sentencerDL, embeddings]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") | ||
.setInputCols(["document"]) | ||
.setOutputCol("sentence") | ||
|
||
val embeddings = XlmRoBertaSentenceEmbeddings | ||
.pretrained("multilingual_e5_large", "xx") | ||
.setInputCols(Array("sentence")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, sentencerDL, embeddings)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|multilingual_e5_large| | ||
|Compatibility:|Spark NLP 5.1.2+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence]| | ||
|Output Labels:|[embeddings]| | ||
|Language:|xx| | ||
|Size:|1.3 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/intfloat/multilingual-e5-large |
100 changes: 100 additions & 0 deletions
100
docs/_posts/ahmedlone127/2023-09-21-multilingual_e5_small_xx.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
--- | ||
layout: model | ||
title: Multilingual multilingual_e5_small XlmRoBertaSentenceEmbeddings from intfloat | ||
author: John Snow Labs | ||
name: multilingual_e5_small | ||
date: 2023-09-21 | ||
tags: [xlm_roberta, xx, open_source, tensorflow] | ||
task: Embeddings | ||
language: xx | ||
edition: Spark NLP 5.1.2 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: XlmRoBertaSentenceEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained XlmRoBertaSentenceEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multilingual_e5_small` is a Multilingual model originally trained by intfloat. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multilingual_e5_small_xx_5.1.2_3.0_1695316525385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multilingual_e5_small_xx_5.1.2_3.0_1695316525385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("sentence") | ||
|
||
embeddings =XlmRoBertaSentenceEmbeddings.pretrained("multilingual_e5_small","xx") \ | ||
.setInputCols(["sentence"]) \ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = Pipeline().setStages([document_assembler, sentencerDL, embeddings]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val sentencerDL = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") | ||
.setInputCols(["document"]) | ||
.setOutputCol("sentence") | ||
|
||
val embeddings = XlmRoBertaSentenceEmbeddings | ||
.pretrained("multilingual_e5_small", "xx") | ||
.setInputCols(Array("sentence")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, sentencerDL, embeddings)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|multilingual_e5_small| | ||
|Compatibility:|Spark NLP 5.1.2+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence]| | ||
|Output Labels:|[embeddings]| | ||
|Language:|xx| | ||
|Size:|284.4 MB| | ||
|
||
## References | ||
|
||
https://huggingface.co/intfloat/multilingual-e5-small |