forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
create partial shuffle reader #3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
JkSelf
reviewed
Jan 14, 2020
val shuffleStages = shuffles.map { | ||
case PartialShuffleReaderExec(s: ShuffleQueryStageExec, _) => s | ||
case s: ShuffleQueryStageExec => s | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
remove this blank line.
JkSelf
pushed a commit
that referenced
this pull request
Feb 18, 2020
### What changes were proposed in this pull request? `org.apache.spark.sql.kafka010.KafkaDelegationTokenSuite` failed lately. After had a look at the logs it just shows the following fact without any details: ``` Caused by: sbt.ForkMain$ForkError: sun.security.krb5.KrbException: Server not found in Kerberos database (7) - Server not found in Kerberos database ``` Since the issue is intermittent and not able to reproduce it we should add more debug information and wait for reproduction with the extended logs. ### Why are the changes needed? Failing test doesn't give enough debug information. ### Does this PR introduce any user-facing change? No. ### How was this patch tested? I've started the test manually and checked that such additional debug messages show up: ``` >>> KrbApReq: APOptions are 00000000 00000000 00000000 00000000 >>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType Looking for keys for: kafka/localhostEXAMPLE.COM Added key: 17version: 0 Added key: 23version: 0 Added key: 16version: 0 Found unsupported keytype (3) for kafka/localhostEXAMPLE.COM >>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType Using builtin default etypes for permitted_enctypes default etypes for permitted_enctypes: 17 16 23. >>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType MemoryCache: add 1571936500/174770/16C565221B70AAB2BEFE31A83D13A2F4/client/localhostEXAMPLE.COM to client/localhostEXAMPLE.COM|kafka/localhostEXAMPLE.COM MemoryCache: Existing AuthList: #3: 1571936493/200803/8CD70D280B0862C5DA1FF901ECAD39FE/client/localhostEXAMPLE.COM #2: 1571936499/985009/BAD33290D079DD4E3579A8686EC326B7/client/localhostEXAMPLE.COM #1: 1571936499/995208/B76B9D78A9BE283AC78340157107FD40/client/localhostEXAMPLE.COM ``` Closes apache#26252 from gaborgsomogyi/SPARK-29580. Authored-by: Gabor Somogyi <gabor.g.somogyi@gmail.com> Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
JkSelf
pushed a commit
that referenced
this pull request
Jul 28, 2020
### What changes were proposed in this pull request? This PR proposes to make `PythonFunction` holds `Seq[Byte]` instead of `Array[Byte]` to be able to compare if the byte array has the same values for the cache manager. ### Why are the changes needed? Currently the cache manager doesn't use the cache for `udf` if the `udf` is created again even if the functions is the same. ```py >>> func = lambda x: x >>> df = spark.range(1) >>> df.select(udf(func)("id")).cache() ``` ```py >>> df.select(udf(func)("id")).explain() == Physical Plan == *(2) Project [pythonUDF0#14 AS <lambda>(id)apache#12] +- BatchEvalPython [<lambda>(id#0L)], [pythonUDF0#14] +- *(1) Range (0, 1, step=1, splits=12) ``` This is because `PythonFunction` holds `Array[Byte]`, and `equals` method of array equals only when the both array is the same instance. ### Does this PR introduce _any_ user-facing change? Yes, if the user reuse the Python function for the UDF, the cache manager will detect the same function and use the cache for it. ### How was this patch tested? I added a test case and manually. ```py >>> df.select(udf(func)("id")).explain() == Physical Plan == InMemoryTableScan [<lambda>(id)apache#12] +- InMemoryRelation [<lambda>(id)apache#12], StorageLevel(disk, memory, deserialized, 1 replicas) +- *(2) Project [pythonUDF0#5 AS <lambda>(id)#3] +- BatchEvalPython [<lambda>(id#0L)], [pythonUDF0#5] +- *(1) Range (0, 1, step=1, splits=12) ``` Closes apache#28774 from ueshin/issues/SPARK-31945/udf_cache. Authored-by: Takuya UESHIN <ueshin@databricks.com> Signed-off-by: HyukjinKwon <gurwls223@apache.org>
JkSelf
pushed a commit
that referenced
this pull request
Jul 28, 2020
… without WindowExpression ### What changes were proposed in this pull request? Add WindowFunction check at `CheckAnalysis`. ### Why are the changes needed? Provide friendly error msg. **BEFORE** ```scala scala> sql("select rank() from values(1)").show java.lang.UnsupportedOperationException: Cannot generate code for expression: rank() ``` **AFTER** ```scala scala> sql("select rank() from values(1)").show org.apache.spark.sql.AnalysisException: Window function rank() requires an OVER clause.;; Project [rank() AS RANK()#3] +- LocalRelation [col1#2] ``` ### Does this PR introduce _any_ user-facing change? Yes, user wiill be given a better error msg. ### How was this patch tested? Pass the newly added UT. Closes apache#28808 from ulysses-you/SPARK-31975. Authored-by: ulysses <youxiduo@weidian.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.