-
Notifications
You must be signed in to change notification settings - Fork 134
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1da2816
commit 56b980a
Showing
1 changed file
with
373 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,373 @@ | ||
#!/usr/bin/python | ||
# -*- coding: utf-8 -*- | ||
# @Time : 2018/5/10 下午5:14 | ||
# @Author : ComeOnJian | ||
# @File : SVM.py | ||
|
||
# 参考 SVM https://blog.csdn.net/sinat_33829806/article/details/78388025 | ||
|
||
|
||
import math | ||
import numpy as np | ||
import random | ||
import copy | ||
import re | ||
from sklearn import metrics | ||
import pandas as pd | ||
from sklearn.preprocessing import LabelBinarizer | ||
from sklearn import svm | ||
|
||
train_file = '../data/Titanic/train.csv' | ||
test_file = '../data/Titanic/test.csv' | ||
test_result_file = '../data/Titanic/gender_submission.csv' | ||
|
||
def data_feature_engineering(full_data,age_default_avg=True,one_hot=True): | ||
""" | ||
:param full_data:全部数据集包括train,test | ||
:param age_default_avg:age默认填充方式,是否使用平均值进行填充 | ||
:param one_hot: Embarked字符处理是否是one_hot编码还是映射处理 | ||
:return: 处理好的数据集 | ||
""" | ||
for dataset in full_data: | ||
# Pclass、Parch、SibSp不需要处理 | ||
|
||
# sex 0,1 | ||
dataset['Sex'] = dataset['Sex'].map(Passenger_sex).astype(int) | ||
|
||
# FamilySize | ||
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 | ||
|
||
# IsAlone | ||
dataset['IsAlone'] = 0 | ||
isAlone_mask = dataset['FamilySize'] == 1 | ||
dataset.loc[isAlone_mask, 'IsAlone'] = 1 | ||
|
||
# Fare 离散化处理,6个阶段 | ||
fare_median = dataset['Fare'].median() | ||
dataset['CategoricalFare'] = dataset['Fare'].fillna(fare_median) | ||
dataset['CategoricalFare'] = pd.qcut(dataset['CategoricalFare'],6,labels=[0,1,2,3,4,5]) | ||
|
||
# Embarked映射处理,one-hot编码,极少部分缺失值处理 | ||
dataset['Embarked'] = dataset['Embarked'].fillna('S') | ||
dataset['Embarked'] = dataset['Embarked'].astype(str) | ||
if one_hot: | ||
# 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码 | ||
Embarked_arr = LabelBinarizer().fit_transform(dataset['Embarked']) | ||
dataset['Embarked_0'] = Embarked_arr[:, 0] | ||
dataset['Embarked_1'] = Embarked_arr[:, 1] | ||
dataset['Embarked_2'] = Embarked_arr[:, 2] | ||
dataset.drop('Embarked',axis=1,inplace=True) | ||
else: | ||
# 字符串映射处理 | ||
dataset['Embarked'] = dataset['Embarked'].map(Passenger_Embarked).astype(int) | ||
|
||
# Name选取称呼Title_name | ||
dataset['TitleName'] = dataset['Name'].apply(get_title_name) | ||
dataset['TitleName'] = dataset['TitleName'].replace('Mme', 'Mrs') | ||
dataset['TitleName'] = dataset['TitleName'].replace('Mlle', 'Miss') | ||
dataset['TitleName'] = dataset['TitleName'].replace('Ms', 'Miss') | ||
dataset['TitleName'] = dataset['TitleName'].replace(['Lady', 'Countess', 'Capt', 'Col', \ | ||
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], | ||
'Other') | ||
dataset['TitleName'] = dataset['TitleName'].map(Passenger_TitleName).astype(int) | ||
|
||
# age —— 缺失值,分段处理 | ||
if age_default_avg: | ||
# 缺失值使用avg处理 | ||
age_avg = dataset['Age'].mean() | ||
age_std = dataset['Age'].std() | ||
age_null_count = dataset['Age'].isnull().sum() | ||
age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count) | ||
|
||
dataset.loc[np.isnan(dataset['Age']), 'Age'] = age_default_list | ||
dataset['Age'] = dataset['Age'].astype(int) | ||
else: | ||
# 将age作为label,预测缺失的age | ||
# 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked | ||
feature_list = ['TitleName', 'Sex', 'Pclass', 'SibSp', 'Parch', 'IsAlone','CategoricalFare', | ||
'FamilySize', 'Embarked','Age'] | ||
if one_hot: | ||
feature_list.append('Embarked_0') | ||
feature_list.append('Embarked_1') | ||
feature_list.append('Embarked_2') | ||
feature_list.remove('Embarked') | ||
Age_data = dataset.loc[:,feature_list] | ||
|
||
un_Age_mask = np.isnan(Age_data['Age']) | ||
Age_train = Age_data[~un_Age_mask] #要训练的Age | ||
|
||
# print(Age_train.shape) | ||
feature_list.remove('Age') | ||
rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2, | ||
max_depth=7,random_state=10) | ||
|
||
rf0.fit(Age_train[feature_list],Age_train['Age']) | ||
|
||
def set_default_age(age): | ||
if np.isnan(age['Age']): | ||
# print(age['PassengerId']) | ||
# print age.loc[feature_list] | ||
data_x = np.array(age.loc[feature_list]).reshape(1,-1) | ||
# print data_x | ||
age_v = round(rf0.predict(data_x)) | ||
# print('pred:',age_v) | ||
# age['Age'] = age_v | ||
return age_v | ||
# print age | ||
return age['Age'] | ||
|
||
dataset['Age'] = dataset.apply(set_default_age, axis=1) | ||
# print(dataset.tail()) | ||
# | ||
# data_age_no_full = dataset[dataset['Age'].] | ||
|
||
# pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分, | ||
# 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同 | ||
# print(dataset.tail()) | ||
dataset['CategoricalAge'] = pd.cut(dataset['Age'], 5,labels=[0,1,2,3,4]) | ||
return full_data | ||
def data_feature_select(full_data): | ||
""" | ||
:param full_data:全部数据集 | ||
:return: | ||
""" | ||
for data_set in full_data: | ||
drop_list = ['PassengerId','Name','Age','Fare','Ticket','Cabin'] | ||
data_set.drop(drop_list,axis=1,inplace=True) | ||
train_y = np.array(full_data[0]['Survived']) | ||
train = full_data[0].drop('Survived',axis=1,inplace=False) | ||
# print(train.head()) | ||
train_X = np.array(train) | ||
test_X = np.array(full_data[1]) | ||
return train_X,train_y,test_X | ||
def Passenger_sex(x): | ||
sex = {'female': 0, 'male': 1} | ||
return sex[x] | ||
def Passenger_Embarked(x): | ||
Embarked = {'S': 0, 'C': 1 , 'Q': 2} | ||
return Embarked[x] | ||
def Passenger_TitleName(x): | ||
TitleName = {'Mr': 0, 'Miss': 1, 'Mrs': 2,'Master': 3, 'Other': 4} | ||
return TitleName[x] | ||
def Passenger_Survived(x): | ||
Survived = {0: -1, 1: 1} | ||
return Survived[x] | ||
def get_title_name(name): | ||
title_s = re.search(' ([A-Za-z]+)\.', name) | ||
if title_s: | ||
return title_s.group(1) | ||
return "" | ||
|
||
class SVM(): | ||
def __init__(self,kernal,maxIter,C,epsilon,sigma = 0.001): | ||
""" | ||
:param kernal:核函数 | ||
:param maxIter:最大迭代次数 | ||
:param C:松弛变量前的惩罚系数 | ||
:param epseion: | ||
""" | ||
self.kernal = kernal | ||
self.C = C | ||
self.maxIter = maxIter | ||
self.epsilon = epsilon | ||
self.sigma = sigma #高斯核函数的sigma值 | ||
|
||
|
||
def train(self,train_X,train_y): | ||
|
||
self.sample_num = train_X.shape[0] | ||
self.feature_num = train_X.shape[1] | ||
|
||
self.labels =train_y | ||
self.samples = train_X | ||
|
||
# 算法的模型为 《统计学习方法》——公式7.104,主要包括a,b,核函数 | ||
self.a = np.zeros(self.sample_num)#[0 for a_i in range(self.sample_num)] | ||
self.b = 0 | ||
|
||
self.eCache = np.zeros(shape=(self.sample_num,2))# 存储差值 | ||
self._smo() | ||
self._update() | ||
|
||
def predict(self,test_x): | ||
# 《统计学习方法》——公式7.104,计算预测值 | ||
pre_v = 0 | ||
for index in range(self.sample_num): | ||
pre_v = pre_v + self.a[index] * self.labels[index] * self._kernel(test_x,self.samples[index]) | ||
pre_v = pre_v + self.b | ||
return pre_v | ||
|
||
def predict_s(self,test_x): | ||
# 《统计学习方法》——公式7.104,计算预测值 | ||
pre_v = 0 | ||
for index in range(self.sample_num): | ||
pre_v = pre_v + self.a[index] * self.labels[index] * self._kernel(test_x,self.samples[index]) | ||
pre_v = pre_v + self.b | ||
y = 1 | ||
if pre_v < 0: | ||
y = 0 | ||
else: | ||
y = 1 | ||
return y | ||
|
||
def _smo(self): | ||
pre_a = copy.deepcopy(self.a) # 复制 | ||
for iter in range(self.maxIter): | ||
flag = 1 | ||
for index in range(self.sample_num): | ||
diff = 0 | ||
self._update() | ||
E_i = self._calE(self.samples[index],self.labels[index]) | ||
j,E_j = self._chooseJ(index,E_i) | ||
|
||
# 计算L H | ||
(L,H) = self._calLH(pre_a,j,index) | ||
|
||
# 《统计学习方法》——公式7.107,n = K11 + K22 - 2 * K12 | ||
n = self._kernel(self.samples[index],self.samples[index]) \ | ||
+ self._kernel(self.samples[j],self.samples[j])\ | ||
- 2 * self._kernel(self.samples[index],self.samples[j]) | ||
if (n == 0): | ||
continue | ||
# 《统计学习方法》——公式7.106,计算未剪切的a_j极值 | ||
self.a[j] = pre_a[j] + float(self.labels[j] * (E_i - E_j))/n | ||
# 《统计学习方法》——公式7.108,计算剪切的a_j极值 | ||
if self.a[j] > H: | ||
self.a[j] = H | ||
elif self.a[j] < L: | ||
self.a[j] = L | ||
# 更新 | ||
self.eCache[j] = [1,self._calE(self.samples[j],self.labels[j])] | ||
|
||
diff = sum([abs(pre_a[m] - self.a[m]) for m in range(len(self.a))]) | ||
if diff < self.epsilon: | ||
# 满足精度条件 | ||
flag = 0 | ||
pre_a = copy.deepcopy(self.a) | ||
|
||
if flag == 0: | ||
break | ||
|
||
def _calW(self): | ||
""" | ||
:return: 计算W的公式 | ||
""" | ||
self.w = np.zeros((1,self.feature_num)) | ||
for index in range(self.sample_num): | ||
for j in range(self.feature_num): | ||
self.w[0][j] = self.w[0][j] + self.a[index] * self.labels[index] * self.samples[index][j] | ||
# temp = temp + self.a[index] * self.labels[index] * self.samples[index] | ||
# self.w = temp | ||
|
||
def _calE(self,sample,y): | ||
# 计算E_i,输入X_i与真实值之间的误差,《统计学习方法》——公式7.105 | ||
pre_v = self.predict(sample) | ||
return pre_v - y | ||
|
||
def _calLH(self,a,j,i): | ||
#《统计学习方法》——p126页 | ||
if(self.labels[j] != self.labels[i]): | ||
return (max(0,a[j]-a[i]),min(self.C,self.C+a[j]-a[i])) | ||
else: | ||
return (max(0, a[j] + a[i] - self.C), min(self.C, a[j] + a[i])) | ||
|
||
def _update(self): | ||
# 更新w,b | ||
self._calW() | ||
# 核函数的计算b的公式 | ||
max_v = -99999 | ||
min_v = 99999 | ||
for index in range(self.sample_num): | ||
res = self.w * self.samples[index] | ||
# print(res[0].shape) | ||
w_x = sum(res[0]) | ||
|
||
if self.labels[index] == -1: | ||
# y_i =-1的情况 | ||
if w_x > max_v: | ||
max_v = w_x | ||
|
||
else: | ||
## y_i = 1的情况 | ||
if w_x < min_v: | ||
min_v = w_x | ||
|
||
self.b = self.b - 0.5 * (min_v + max_v) | ||
|
||
def _kernel(self,X_i,X_j): | ||
""" | ||
:param X_i: | ||
:param X_j: | ||
:return: 核函数K(X_i,X_j)计算结果 | ||
""" | ||
result = 0. | ||
# 高斯内核 | ||
if self.kernal == 'Gauss': | ||
temp = -sum((X_i - X_j)**2)/(2 * self.sigma**2) | ||
result = math.exp(temp) | ||
# 线性内核 | ||
elif self.kernal == 'line': | ||
result = sum(X_i * X_j) | ||
|
||
return result | ||
|
||
def _chooseJ(self,i,E_i): | ||
# 选择变量 | ||
self.eCache[i] = [1,E_i] | ||
choose_list = [] | ||
# 查找之前计算的可选择的的E_i | ||
for cache_index in range(len(self.eCache)): | ||
if self.eCache[cache_index][0] != 0 and cache_index != i: | ||
choose_list.append(cache_index) | ||
if len(choose_list)>1: | ||
E_k =0 | ||
delta_E = 0 | ||
max_E = 0 | ||
j = 0 # 要选择的J | ||
E_j = 0# 及其对应的E | ||
for choose_index in choose_list: | ||
E_k = self._calE(self.samples[choose_index],self.labels[choose_index]) | ||
delta_E = abs(E_k-E_i) | ||
if delta_E > max_E: | ||
max_E = delta_E | ||
j = choose_index | ||
E_j = E_k | ||
return j,E_j | ||
# 初始状态,没有已经计算好的E | ||
else: | ||
j = self._randJ(i) | ||
E_j = self._calE(self.samples[j],self.labels[j]) | ||
return j , E_j | ||
|
||
def _randJ(self,i): | ||
j = i | ||
while(j == i): | ||
j = random.randint(0,self.sample_num-1) | ||
return j | ||
|
||
if __name__ == '__main__': | ||
train = pd.read_csv(train_file) | ||
test = pd.read_csv(test_file) | ||
test_y = pd.read_csv(test_result_file) | ||
train['Survived'] = train['Survived'].map(Passenger_Survived).astype(int) | ||
full_data = [train, test] | ||
|
||
|
||
full_data = data_feature_engineering(full_data, age_default_avg=True, one_hot=False) | ||
train_X, train_y, test_X = data_feature_select(full_data) | ||
|
||
svm1 = SVM('line',1000,0.05,0.001) | ||
svm1.train(train_X, train_y) | ||
results = [] | ||
for test_sample in test_X: | ||
y = svm1.predict_s(test_sample) | ||
results.append(y) | ||
|
||
y_test_true = np.array(test_y['Survived']) | ||
print("the svm model Accuracy : %.4g" % metrics.accuracy_score(y_pred=results, y_true=y_test_true)) | ||
|
||
# svm_s = svm.SVC(C=1,kernel='linear') | ||
# svm_s.fit(train_X, train_y) | ||
# pre_y = svm_s.predict(test_X) | ||
# y_test_true = np.array(test_y['Survived']) | ||
# print("the svm model Accuracy : %.4g" % metrics.accuracy_score(y_pred=pre_y, y_true=y_test_true)) |