-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
He hecho ACC hasta que la pereza ha podido conmigo
- Loading branch information
1 parent
5aad400
commit 1bba1fe
Showing
1 changed file
with
284 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,284 @@ | ||
\documentclass[twoside]{article} | ||
\usepackage{../../estilo-ejercicios} | ||
|
||
%-------------------------------------------------------- | ||
\begin{document} | ||
|
||
\title{Ejercicios de Ideals, Varieties, and Algorithms (4ª Edición)} | ||
\author{Diego Pedraza López, Javier Aguilar Martín, Rafael González López} | ||
\maketitle | ||
|
||
\begin{ejercicio}{7.3.1}\ | ||
\begin{enumerate}[a.] | ||
\item Explain why $1 ∈ k[x^2]$ but $1 \not∈ | ||
\gene{x^2}$. | ||
\item Explain why $x^3 \not∈ k[x^2]$ but $x^3 ∈ | ||
x^2$. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item $1 ∈ k[x^2]$ por definición de anillo de polinomios, ya que $1\in k$. $1 \not∈ | ||
\gene{x^2}$ porque eso implicaría que existe un polinomio $f\in k[x]$ de modo que $f(x)x^2=1$, con lo que $x^2$ sería unidad, lo cual no es cierto. | ||
\item Los polinomios de $k[x^2]$ son expresiones finitas de la forma $\sum_i a_i(x^2)^i$, por lo que todos los términos tienen grado par, por lo que $x^3 \not∈ k[x^2]$. Sin embargo, $x^3=x\cdot x^2$, por lo que $x^3 ∈ | ||
x^2$. | ||
\end{enumerate} | ||
\end{solucion} | ||
|
||
\newpage | ||
|
||
\begin{ejercicio}{7.3.2} | ||
Let $G$ be a finite matrix group in $GL(n, k)$. Prove that the Reynolds operator $R_G$ has the | ||
following properties: | ||
\begin{enumerate}[a.] | ||
\item If $a, b ∈ k$ and $f , g ∈ k[x_1, \dots, x_n]$, then $R_G(af + bg) = aR_G( f) + bR_G(g)$. | ||
\item $R_G$ maps $k[x_1, \dots, x_n]$ to $k[x_1, \dots , x_n]^G$ and is onto. | ||
\item $R_G \circ R_G = R_G$. | ||
\item If $f ∈ k[x_1, \dots, x_n]^G$ and $g ∈ k[x_1, \dots , x_n]$, then $R_G( fg) = f R_G(g)$. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion} | ||
Tengamos presenta la definición del operador de Reynolds | ||
\[ | ||
R_G( f )(x) = | ||
\frac{1}{|G|}\sum_{A∈G}f (A \cdot x) | ||
\] | ||
\begin{enumerate}[a.] | ||
\item | ||
\[ | ||
R_G( af + bg )(x) = | ||
\frac{1}{|G|}\sum_{A∈G}(af + bg) (A \cdot x)=a\frac{1}{|G|}\sum_{A∈G}f (A \cdot x)+b\frac{1}{|G|}\sum_{A∈G}g (A \cdot x)=aR_G( f)(x) + bR_G(g)(x). | ||
\] | ||
\item Dada $B\in G$, | ||
\[ | ||
R_G( f )(Bx) = | ||
\frac{1}{|G|}\sum_{A∈G}f (A \cdot B x)=\frac{1}{|G|}\sum_{A∈G}f ( A x) | ||
\] | ||
puesto que $AB$ recorre todas las matrices de $G$, así que a lo sumo cambia el orden en el que aparece cada término. | ||
|
||
Dado $g\in k[x_1, \dots, x_n]^G$, $g(x)=g(Ax)$ para toda $A\in G$, de modo que $g(x)=\frac{1}{|G|}\sum_{A∈G}g (A x)=R_G(g)(x)$, por lo que se tiene a sí mismo como preimagen. | ||
\item Por el apartado anterior, $R_G$ envía $k[x_1, \dots, x_n]$ en $k[x_1, \dots, x_n]^G$ y es la identidad sobre este último, por lo que se tiene el resultado. | ||
\item \[ | ||
R_G( fg )(x) = | ||
\frac{1}{|G|}\sum_{A∈G}f (A \cdot x)g(A\cdot x)=\frac{1}{|G|}\sum_{A∈G}f (x)g(A\cdot x)=f(x)\sum_{A∈G}g(A\cdot x)=f(x)R_G(g)(x). | ||
\] | ||
|
||
\end{enumerate} | ||
\end{solucion} | ||
|
||
\newpage | ||
|
||
\begin{ejercicio}{7.3.3} | ||
In this exercise, we will work with the cyclic group $C_4 ⊆ GL(2, k)$ from Example 4 in | ||
the text. | ||
\begin{enumerate}[a.] | ||
\item Prove that the Reynolds operator of $C_4$ is given by | ||
\[ | ||
R_{C_4} ( f )(x, y) = | ||
\frac{1}{4} | ||
( f (x, y) + f (−y, x) +f (−x,−y) + f (y,−x)). | ||
\] | ||
\item Compute $R_{C_4}(x^iy^j)$ for all $i + j ≤ 4$. Note that some of the computations are done in | ||
Example 4. You can check your answers against the table in Example 6. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item El grupo $C_4$ está formado por las matrices | ||
\[ | ||
\begin{pmatrix} | ||
0 & -1\\ | ||
1 & 0 | ||
\end{pmatrix}, \begin{pmatrix} | ||
-1 & 0\\ | ||
0 & -1 | ||
\end{pmatrix},\begin{pmatrix} | ||
0 & 1\\ | ||
-1 & 0 | ||
\end{pmatrix}, \begin{pmatrix} | ||
0 & 1\\ | ||
1 & 0 | ||
\end{pmatrix}. | ||
\] | ||
Con esto y con la definición del operador de Reynolds el resultado se sigue inmediatamente. | ||
\item Están hechos en la página 368 del libro. | ||
\end{enumerate} | ||
|
||
\end{solucion} | ||
|
||
|
||
\newpage | ||
|
||
\begin{ejercicio}{7.3.4} | ||
We will use | ||
the multinomial coefficients, which are defined as follows. For $α = (α_1, \dots , α_n) ∈ \Z^n_{≥0}$, | ||
let $|α| = m$ and define | ||
\[ | ||
\binom{m}{α} | ||
= | ||
\frac{m!}{α_1!α_2! \cdots α_n!}. | ||
\] | ||
\begin{enumerate}[a.] | ||
\item Prove that $\binom{m}{\alpha}$ | ||
is an integer. Hint: Use induction on $n$ and note that when $n = 2$, $\binom{m}{\alpha}$ | ||
is a binomial coefficient. | ||
|
||
\item Prove that | ||
\[ | ||
(x_1 + \cdots + x_n)^m = | ||
\sum_{|α|=m}\binom{m}{α}x^α. | ||
\] | ||
In particular, the coefficient $a_α$ in equation (2) is the positive integer $\binom{m}{α}$. Hint: Use | ||
induction on $n$ and note that the case $n = 2$ is the binomial theorem. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item Para $n=1$ tendríamos el número 1. Para $n=2$ se trata del coeficiente binomial, pues tenemos $\frac{m!}{α_1!α_2!}$ con $\alpha_2=m-\alpha_1$, por lo que es entero. Supongámoslo cierto para $n-1$, es decir, es cierto para $|\alpha|=\alpha_1+\cdots\alpha_{n-1}=m$. Entonces, dado $\alpha_n\in\Z$, | ||
\[ | ||
\binom{m+\alpha_n}{\alpha\cup \alpha_n}=\frac{(m+\alpha_n)!}{α_1! \cdots \alpha_{n-1}!α_n!}=\frac{(m+\alpha_n)\cdots(m+1)}{\alpha_n!}\frac{m!}{α_1! \cdots \alpha_{n-1}!}=\binom{m+\alpha_n}{\alpha_n}\binom{m}{\alpha}\in\Z | ||
\] | ||
\item Para $m=1$ y para $n=1$ es trivial. Para $n=2$ tenemos justamente el teorema del binomio. Supongamos el resultado cierto para $n-1$. Entonces | ||
\begin{gather*} | ||
(x_1 + \cdots+x_{n-1} + x_n)^m=((x_1 + \cdots+ x_{n-1})+ x_n)^m=\sum_{k=0}^m (x_1\cdots x_{n-1})^{m-k}x_n^k=\sum_{|\alpha|=m}x^\alpha | ||
\end{gather*} | ||
|
||
|
||
\end{enumerate} | ||
\end{solucion} | ||
\newpage | ||
|
||
\begin{ejercicio}{7.2.5} | ||
|
||
\end{ejercicio} | ||
\begin{solucion} | ||
|
||
\end{solucion} | ||
\newpage | ||
|
||
\begin{ejercicio}{7.3.6} | ||
If we have two finite matrix groups $G$ and $H$ such that $G ⊆ H ⊆ GL(n, k)$, prove that | ||
$k[x_1, \dots , x_n]^H ⊆ k[x_1, \dots , x_n]^G$. | ||
\end{ejercicio} | ||
\begin{solucion} | ||
Dado $f\in k[x_1, \dots , x_n]^H$, $f(Ax)=f(x)$ para toda $A\in H$. En particular, para $A\in G$. | ||
\end{solucion} | ||
\newpage | ||
|
||
\begin{ejercicio}{7.3.7} | ||
Consider the matrix | ||
$$A = | ||
\begin{pmatrix} | ||
0 &−1\\ | ||
1 &−1 | ||
\end{pmatrix}∈ GL(2, k).$$ | ||
\begin{enumerate}[a.] | ||
\item Show that $A$ generates a cyclic matrix group $C_3$ of order 3. | ||
\item Use Theorem 5 to find finitely many homogeneous invariants which generate $k[x, y]^{C_3}$. | ||
\item Can you find fewer invariants that generate $k[x, y]^{C_3}$? Hint: If you have invariants | ||
$f_1, \dots , f_m$, you can use Proposition 7 to determine whether $f_1 ∈ k[ f_2, \dots , f_m]$. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item | ||
\[ | ||
A^2=\begin{pmatrix} | ||
-1 & 1\\ | ||
-1 & 0 | ||
\end{pmatrix}, A^3=I. | ||
\] | ||
\item Como el grupo tiene orden 3, tenemos que calcular $R_{C_3}(x^iy^j)$ para todo $1\leq i+j\leq 3$. | ||
\begin{align*} | ||
R_{C_3}(x)=\frac{1}{3}(-y+y-x+x) \Rightarrow &0\\ | ||
R_{C_3}(x^2)=\frac{1}{3}((-y)^2+(y-x)^2+x^2)\Rightarrow & 2x^2-2xy+2y^2\\ | ||
R_{C_3}(x^3)=\frac{1}{3}(-y^3+(y-x)^3+x^3)\Rightarrow & 3x^2y-3y^2\\ | ||
R_{C_3}(y)=\frac{1}{3}(x-y-x+y)\Rightarrow & 0\\ | ||
R_{C_3}(y^2)=\frac{1}{3}((x-y)^2+x^2+y^2)\Rightarrow & 2x^2+2y^2-2xy\\ | ||
R_{C_3}(y^3)=\frac{1}{3}((x-y)^3-x^3+y^3)\Rightarrow &-3x^2y+3xy^2\\ | ||
R_{C_3}(xy)=\frac{1}{3}()\\ | ||
R_{C_3}(x^2y)=\frac{1}{3}()\\ | ||
R_{C_3}(xy^2)=\frac{1}{3}()\\ | ||
\end{align*} | ||
TERMINARLO O HACER UN PROGRAMA EN SAGE | ||
\end{enumerate} | ||
|
||
|
||
\end{solucion} | ||
\newpage | ||
|
||
\begin{ejercicio}{7.3.8} | ||
Let $A$ be the matrix of Exercise \ref{ejer:7.3.7}. | ||
\begin{enumerate}[a.] | ||
\item Show that $−A$ generates a cyclic matrix group $C_6$, of order 6. | ||
\item Show that $−I_2 ∈ C_6$. Then use Exercise \ref{ejer:7.3.6} and §2 to show that $k[x, y]^{C_6} ⊆ k[x^2, y^2, xy]$. | ||
Conclude that all nonzero homogeneous invariants of $C_6$ have even total degree. | ||
\item Use part (b) and Theorem 5 to find $k[x, y]^{C_6}$. Hint: There are still a lot of Reynolds | ||
operators to compute. You should use a computer algebra program to design a procedure | ||
that has $i, j$ as input and $R_{C_6} (x^iy^j)$ as output. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item | ||
\item | ||
\item | ||
\end{enumerate} | ||
\end{solucion} | ||
|
||
\newpage | ||
|
||
\begin{ejercicio}{7.3.9} | ||
|
||
\end{ejercicio} | ||
\begin{solucion} | ||
\end{solucion} | ||
\newpage | ||
|
||
\begin{ejercicio}{7.3.10} | ||
Consider the finite matrix group | ||
\[ | ||
G = | ||
\left\{\begin{pmatrix} | ||
±1& 0 &0\\ | ||
0 &±1 &0\\ | ||
0 &0 &±1 | ||
\end{pmatrix} | ||
\right\} | ||
⊆ GL(3, k). | ||
\] | ||
Note that $G$ has order 8. | ||
\begin{enumerate}[a.] | ||
\item If we were to use Theorem 5 to determine $k[x, y, z]^G$, for how many monomials would | ||
we have to compute the Reynolds operator? | ||
\item Use the method of Example 12 in §2 to determine $k[x, y, z]^G$. | ||
\end{enumerate} | ||
|
||
\end{ejercicio} | ||
\begin{solucion}\ | ||
\begin{enumerate}[a.] | ||
\item $9+8+7+6+5+4+3+2=44$. | ||
\item | ||
\end{enumerate} | ||
\end{solucion} | ||
\newpage | ||
|
||
|
||
\begin{ejercicio}{7.3.11} | ||
Let $f$ be the polynomial (4) in the text. | ||
\begin{enumerate}[a.] | ||
\item Verify that $f ∈ k[x, y]^{C_4} = k[x^2 + y^2, x^3y − xy^3, x^2y^2]$. | ||
\item Use Proposition 7 to express $f$ as a polynomial in $x^2 + y^2$, $x^2y − xy^3$, $x^2y^2$. | ||
\end{enumerate} | ||
\end{ejercicio} | ||
\begin{solucion} | ||
El polinomio en cuestión es $$f (x, y) = x^8 + 2x^6y^2 − x^5y^3 + 2x^4y^4 + x^3y^5 + 2x^2y^6 + y^8.$$ | ||
\begin{enumerate}[a.] | ||
\item Se tiene $f(x,y)=f(-y,x)=f(-x,-y)=f(y,-x)$, que es por definición ser invariante por $C_4$. | ||
\item | ||
\end{enumerate} | ||
\end{solucion} | ||
|
||
|
||
\end{document} | ||
|