This is an unofficial implementation of STAN architecture: https://arxiv.org/ftp/arxiv/papers/2002/2002.01034.pdf
Instructions on how to install and set up the project.
- Clone the repository: 'https://github.com/JaouadT/STAN_implementation_pytorch.git'.
- cd into the repository: cd STAN_implementation_pytorch.
- pip install -r requirements.txt
- Download BUSI dataset: https://academictorrents.com/details/d0b7b7ae40610bbeaea385aeb51658f527c86a16.
Instructions on how to use the project and any relevant examples.
- The script uses a 5 fold cross validation, split the data or reach out for the splitted data and put it inside a 'data' folder.
βββ data
βΒ Β βββ test
βΒ Β βΒ Β βββ images
βΒ Β βΒ Β βΒ Β βββ benign (1).png
βΒ Β βΒ Β βββ masks
βΒ Β βΒ Β βΒ Β βββ benign (1).png
βΒ Β βββ train
βΒ Β βΒ Β βββ split0
βΒ Β βΒ Β βΒ Β βββ images
βΒ Β βΒ Β βΒ Β βββ masks
βΒ Β βΒ Β βββ split1
βΒ Β βΒ Β βββ split2
βΒ Β βΒ Β βββ split3
βΒ Β βΒ Β βββ split4- Run the script main.py
Shareef, Bryar et al. βStan: Small Tumor-Aware Network for Breast Ultrasound Image Segmentation.β 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (2020): 1-5. https://doi.org/10.1109/ISBI45749.2020.9098691