This is a C++ example running 💫 StarCoder inference using the ggml library.
The program can run on the CPU - no video card is required.
The example supports the following 💫 StarCoder models:
bigcode/starcoder
bigcode/gpt_bigcode-santacoder
aka the smol StarCoder
Sample performance on MacBook M1 Pro:
TODO
Sample output:
$ ./bin/starcoder -h
usage: ./bin/starcoder [options]
options:
-h, --help show this help message and exit
-s SEED, --seed SEED RNG seed (default: -1)
-t N, --threads N number of threads to use during computation (default: 8)
-p PROMPT, --prompt PROMPT
prompt to start generation with (default: random)
-n N, --n_predict N number of tokens to predict (default: 200)
--top_k N top-k sampling (default: 40)
--top_p N top-p sampling (default: 0.9)
--temp N temperature (default: 1.0)
-b N, --batch_size N batch size for prompt processing (default: 8)
-m FNAME, --model FNAME
model path (default: models/starcoder-117M/ggml-model.bin)
$ ./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" -t 4 --top_k 0 --top_p 0.95 --temp 0.2
main: seed = 1683881276
starcoder_model_load: loading model from '../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin'
starcoder_model_load: n_vocab = 49280
starcoder_model_load: n_ctx = 2048
starcoder_model_load: n_embd = 2048
starcoder_model_load: n_head = 16
starcoder_model_load: n_layer = 24
starcoder_model_load: ftype = 3
starcoder_model_load: ggml ctx size = 1794.90 MB
starcoder_model_load: memory size = 768.00 MB, n_mem = 49152
starcoder_model_load: model size = 1026.83 MB
main: prompt: 'def fibonnaci('
main: number of tokens in prompt = 7, first 8 tokens: 563 24240 78 2658 64 2819 7
def fibonnaci(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
print(fibo(10))
main: mem per token = 9597928 bytes
main: load time = 480.43 ms
main: sample time = 26.21 ms
main: predict time = 3987.95 ms / 19.36 ms per token
main: total time = 4580.56 ms
git clone https://github.com/bigcode-project/starcoder.cpp
cd starcoder.cpp
# Convert HF model to ggml
python convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder
# Build ggml libraries
make
# quantize the model
./quantize models/bigcode/gpt_bigcode-santacoder-ggml.bin models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3
# run inference
./main -m models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" --top_k 0 --top_p 0.95 --temp 0.2
You can download the original model and convert it to ggml
format using the script convert-hf-to-ggml.py
:
# Convert HF model to ggml
python convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder
This conversion requires that you have python and Transformers installed on your computer.
You can also try to quantize the ggml
models via 4-bit integer quantization.
# quantize the model
./quantize models/bigcode/gpt_bigcode-santacoder-ggml.bin models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3
Model | Original size | Quantized size | Quantization type |
---|---|---|---|
bigcode/gpt_bigcode-santacoder |
5396.45 MB | 1026.83 MB | 4-bit integer (q4_1) |
bigcode/starcoder |
71628.23 MB | 13596.23 MB | 4-bit integer (q4_1) |
The repo includes a proof-of-concept iOS app in the StarCoderApp
directory. You need to provide the converted (and possibly quantized) model weights, placing a file called bigcode_ggml_model.bin.bin
inside that folder. This is what it looks like on an iPhone: