Skip to content

PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Notifications You must be signed in to change notification settings

Jacob-Zhou/FeatureCRFAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feature_CRF_AE

Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging:

@inproceedings{zhou-etal-2022-Bridging,
  title     = {Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging},
  author    = {Zhou, houquan and Li, yang and Li, Zhenghua and Zhang Min},
  booktitle = {Findings of ACL},
  year      = {2022},
  url       = {?},
  pages     = {?--?}
}

Please concact Jacob_Zhou \at outlook.com if you have any questions.

Contents

Installation

Feature_CRF_AE can be installing from source:

$ git clone https://github.com/Jacob-Zhou/FeatureCRFAE && cd FeatureCRFAE
$ bash scripts/setup.sh

The following requirements will be installed in scripts/setup.sh:

  • python: 3.7
  • allennlp: 1.2.2
  • pytorch: 1.6.0
  • transformers: 3.5.1
  • h5py: 3.1.0
  • matplotlib: 3.3.1
  • nltk: 3.5
  • numpy: 1.19.1
  • overrides: 3.1.0
  • scikit_learn: 1.0.2
  • seaborn: 0.11.0
  • tqdm: 4.49.0

For WSJ data, we use the ELMo representations of elmo_2x4096_512_2048cnn_2xhighway_5.5B from AllenNLP. For UD data, we use the ELMo representations released by HIT-SCIR.

The corresponding data and ELMo models can be download as follows:

# 1) UD data and ELMo models:
$ bash scripts/prepare_data.sh
# 2) UD data, ELMo models as well as WSJ data 
#    [please replace ~/treebank3/parsed/mrg/wsj/ with your path to LDC99T42]
$ bash scripts/prepare_data.sh ~/treebank3/parsed/mrg/wsj/

Performance

WSJ-All

Seed M-1 1-1 VM
0 84.29 70.03 78.43
1 82.34 64.42 77.27
2 84.68 62.78 77.83
3 82.55 65.00 77.35
4 82.20 66.69 77.33
Avg. 83.21 65.78 77.64
Std. 1.18 2.75 0.49

WSJ-Test

Seed M-1 1-1 VM
0 81.99 64.84 76.86
1 82.52 61.46 76.13
2 82.33 61.15 75.13
3 78.11 58.80 72.94
4 82.05 61.68 76.21
Avg. 81.40 61.59 75.45
Std. 1.85 2.15 1.54

Usage

We give some examples on scripts/examples.sh. Before run the code you should activate the virtual environment by:

$ . scripts/set_environment.sh

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Here are some training examples:

$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae_wsj
$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --ud-mode \
    --ud-feature \
    --ignore-capitalized \
    --language-specific-strip \
    --feat-min-freq 14 \
    --language de \
    --encoder elmo \
    --plm elmo_models/de \
    --train data/ud/de/total.conll \
    --evaluate data/ud/de/total.conll \
    --path save/crf_ae_de

For more instructions on training, please type python -m tagger.cmds.[crf_ae|feature_hmm] train -h.

Alternatively, We provides some equivalent command entry points registered in setup.py: crf-ae and feature-hmm.

$ crf-ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae

Evaluation

$ python -u -m tagger.cmds.crf_ae evaluate \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae

Predict

$ python -u -m tagger.cmds.crf_ae predict \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae \
    --pred save/crf_ae/pred.conll

About

PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published