ECNU NLP group learns CS224n in the form of seminars in the 2017 summer.
纪焘、黄子寅、杜雨沛
钟鸣(7月4日~7月16日回家)
姚岳坤(7月10日之后)
郑淇(7月15日之后、因为实习所以尽量少讲)
韦阳、付志超(远程参与)
焦乙竹、王江舟(旁听)
CS224n: Natural Language Processing with Deep Learning
Event | Date | Description | 描述 | Speaker |
---|---|---|---|---|
Lecture1 | 7.3 一 | Introduction to NLP and Deep Learning | 介绍自然语言和深度学习 | 王江舟 |
Lecture2 | 7.5 三 | Word Vector Representations:word2vec | Word2Vec词向量表示 | 纪焘 |
Lecture3 | 7.8 六 | Advanced Word Vector Representations | 高级词向量表示 | 杜雨沛 |
Lecture4 | 7.10 一 | Word Window Classification and Neural Networks | 词窗分类与神经网络 | 杜雨沛 |
Lecture5 | 7.12 三 | Backpropagation | 反向传播 | 黄子寅 |
Lecture6 | 7.15 六 | Dependency Parsing | 依存句法分析 | 姚岳坤 |
Assignment #1 | 7.15 六 | 纪焘 | ||
Lecture8 | 7. 18二 | Recurrent Neural Networks and Language Models | RNN与语言模型 | 钟鸣 |
Lecture9 | 7.20四 | Machine translation and advanced recurrent LSTMs and GRUs | 机器翻译与高级RNN | 钟鸣 |
Lecture11 | 7.22 六 | Neural Machine Translation and Models with Attention | NMT与注意力模型 | 黄子寅 |
Lecture12 | 7.24 一 | Gated recurrent units and further topics in NMT | GRU与NMT进阶 | 黄子寅 |
Lecture13 | 7.26 三 | End-to-end models for Speech Processing | 端到端语音处理 | 姚岳坤 |
Lecture14 | 7.29 六 | Convolutional Neural Networks | CNN | 郑淇 |
Assignment #2 | 7.29 六 | 纪焘 | ||
Lecture15 | 7.31 一 | Tree Recursive Neural Networks and Constituency Parsing | 树RNN与短语句法分析 | 钟鸣 |
Lecture16 | 8.2 三 | Coreference Resolution | 共指消解 | 杜雨沛 |
Lecture17 | 8.6 日 | Dynamic Neural Networks for Question Answering | 动态神经网络QA | 钟鸣 |
Lecture18 | 8.7 一 | Issues in NLP and Possible Architectures for NLP | NLP中的问题与可能的解决框架 | 韦阳 |
Lecture19 | 8.9 三 | Tackling the Limits of Deep Learning for NLP | 聚焦深度学习在NLP上的局限性 | 郑淇 |
Assignment #3 | 8.9 三 | 纪焘 | ||
Assignment #4 | 9.10 六 | 纪焘 |