Skip to content

Commit 236265e

Browse files
committed
[Fix] Fix some mistakes of InternVLA docs
1 parent fd94707 commit 236265e

File tree

2 files changed

+6
-9
lines changed

2 files changed

+6
-9
lines changed

source/en/user_guide/internnav/quick_start/installation.md

Lines changed: 5 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -13,10 +13,7 @@
1313

1414
# Installation Guide
1515

16-
😄 Don’t worry — both [Quick Installation](#quick-installation) and [Dataset Preparation](#dataset-preparation) are beginner-friendly.
17-
```
18-
Detailed technical report will be released in about two weeks.
19-
```
16+
😄 Don’t worry — both [Quick Installation](#quick-installation) and [Dataset Preparation](#dataset-preparation) are beginner-friendly. Technical report of InternVLA-N1 is available at [page](https://internrobotics.github.io/internvla-n1.github.io/).
2017

2118
## Prerequisites
2219

@@ -256,7 +253,7 @@ If you need to train or evaluate models on [Habitat](#optional-habitat-environme
256253

257254
#### Prerequisite
258255
- Python 3.9
259-
- Pytorch 2.1.2
256+
- Pytorch 2.6.0
260257
- CUDA 12.4
261258
- GPU: NVIDIA A100 or higher (optional for VLA training)
262259

@@ -353,7 +350,7 @@ InternNav/
353350
│ │ ├── model-00001-of-00004.safetensors
354351
│ │ ├── config.json
355352
│ │ └── ...
356-
│ depth_anything_v2_vits.pth
353+
├── depth_anything_v2_vits.pth
357354
│ ├── r2r
358355
│ │ ├── fine_tuned
359356
│ │ └── zero_shot
@@ -365,7 +362,7 @@ InternNav/
365362
Currently the gradio demo is only available in **habitat** environment. Replace the 'model_path' variable in 'vln_ray_backend.py' with the path of InternVLA-N1 checkpoint.
366363
```bash
367364
conda activate <habitat-env>
368-
srun -p {partition_name} --cpus-per-task 16 --gres gpu:1 python3 scripts/eval/vln_ray_backend.py
365+
python3 scripts/eval/vln_gradio_backend.py
369366
```
370367
Find the IP address of the node allocated by Slurm. Then change the BACKEND_URL in the gradio client (navigation_ui.py) to the server's IP address. Start the gradio.
371368
```bash
@@ -374,7 +371,7 @@ python scripts/eval/navigation_ui.py
374371
Note that it's better to run the Gradio client on a machine with a graphical user interface (GUI) but ensure there is proper network connectivity between the client and the server. Download the gradio scene assets from [huggingface](https://huggingface.co/datasets/InternRobotics/Scene-N1) and extract them into the `scene_assets` directory of the client. Then open a browser and enter the Gradio address (such as http://0.0.0.0:5700). We can see the interface as shown below.
375372
![img.png](../../../_static/image/gradio_interface.jpg)
376373

377-
Click the 'Start Navigation Simulation' button to send a VLN request to the backend. The backend will submit a task to ray server and simulate the VLN task with InternVLA-N1 models. Wait about 1 minutes, the VLN task will be finished and return a result video. We can see the result video in the gradio like this.
374+
Click the 'Start Navigation Simulation' button to send a VLN request to the backend. The backend will submit a task to ray server and simulate the VLN task with InternVLA-N1 models. Wait about 2 minutes, the VLN task will be finished and return a result video. We can see the result video in the gradio like this.
378375
![img.png](../../../_static/image/gradio_result.jpg)
379376

380377

source/en/user_guide/internnav/quick_start/train_eval.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ python -m internnav.agent.utils.server --config scripts/eval/configs/h1_internvl
2525

2626
Finally, start the client:
2727
```bash
28-
INTERNUTOPIA_ASSETS_PATH=/path/to/InternUTopiaAssets MESA_GL_VERSION_OVERRIDE=4.6 python scripts/eval/eval.py --config scripts/eval/configs/h1_internvla_n1_cfg.py
28+
MESA_GL_VERSION_OVERRIDE=4.6 python scripts/eval/eval.py --config scripts/eval/configs/h1_internvla_n1_cfg.py
2929
```
3030

3131
The evaluation results will be saved in the `eval_results.log` file in the output_dir of the config file. The whole evaluation process takes about 10 hours at RTX-4090 graphics platform.

0 commit comments

Comments
 (0)