MOTSAD (Multi-Objective Time-Series Anomaly Detection) is a framework that integrates multi-objective optimization with time-series anomaly detection models.
Git clone and enter the folder
cd MOTSAD
Create and activate conda environment
conda create -n motsad python=3.10.16
conda activate motsad
Install dependencies
pip install -r requirements.txt
-
Server Machine Dataset (SMD)
- Download from OmniAnomaly
- Requires preprocessing: bash python preprocess.py
-
AIOPS 2018 Dataset
- Download from AIOPS
Run MOTSAD algorithm on SMD dataset:
cd lstmad
python motsad.py --dataname machine-1-1
cd lstmad
python motsad.py --dataname <dataset_name>
- Hypervolume Metric:
python evaluation.py --folder lstmad/result/motsad/machine-1-1
- Pareto Front Computation:
python compute_pareto_front.py --folder lstmad/result/motsad/machine-1-1
MOTSAD/
├── data/
│ └── SMD/
│ └── machine-1-1/
│ ├── machine-1-1_test.csv
│ └── machine-1-1_train.csv
├── lstmad/
│ ├── dataset.py
│ ├── early_stopping.py
│ ├── lstm.py
│ ├── main.py
│ ├── motsad.py
├── compute_pareto_front.py
├── evaluation.py
├── preprocess.py
├── utils.py
├── requirements.txt
├── LICENSE
└── README.md