Skip to content

Extratrees inclusion to sklearn_bench #139

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 8 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
- [How to create conda environment for benchmarking](#how-to-create-conda-environment-for-benchmarking)
- [Running Python benchmarks with runner script](#running-python-benchmarks-with-runner-script)
- [Benchmark supported algorithms](#benchmark-supported-algorithms)
- [Scikit-learn benchmakrs](#scikit-learn-benchmakrs)
- [Scikit-learn benchmarks](#scikit-learn-benchmarks)
- [Algorithm parameters](#algorithm-parameters)

## How to create conda environment for benchmarking
Expand Down Expand Up @@ -105,6 +105,8 @@ The configuration of benchmarks allows you to select the frameworks to run, sele
|**[DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)**|dbscan|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)**|df_clfs|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[RandomForestRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)**|df_regr|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
|**[ExtraTreesClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html)**|et_clfs|:white_check_mark:|:x:|:x:|:x:|:x:|
|**[ExtraTreesRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html)**|et_regr|:white_check_mark:|:x:|:x:|:x:|:x:|
|**[pairwise_distances](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html)**|distances|:white_check_mark:|:x:|:white_check_mark:|:x:|:x:|
|**[KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)**|kmeans|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
|**[KNeighborsClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)**|knn_clsf|:white_check_mark:|:x:|:x:|:white_check_mark:|:x:|
Expand All @@ -118,7 +120,7 @@ The configuration of benchmarks allows you to select the frameworks to run, sele
|**[GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|
|**[GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|

### Scikit-learn benchmakrs
### Scikit-learn benchmarks

When you run scikit-learn benchmarks on CPU, [Intel(R) Extension for Scikit-learn](https://github.com/intel/scikit-learn-intelex) is used by default. Use the ``--no-intel-optimized`` option to run the benchmarks without the extension.

Expand Down
72 changes: 72 additions & 0 deletions configs/skl_config.json
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,78 @@
}
]
},
{
"algorithm": "et_clsf",
"dtype": "float32",
"dataset": [
{
"source": "npy",
"name": "higgs1m",
"training":
{
"x": "data/higgs1m_x_train.npy",
"y": "data/higgs1m_y_train.npy"
},
"testing":
{
"x": "data/higgs1m_x_test.npy",
"y": "data/higgs1m_y_test.npy"
}
},
{
"source": "npy",
"name": "airline-ohe",
"training":
{
"x": "data/airline-ohe_x_train.npy",
"y": "data/airline-ohe_y_train.npy"
},
"testing":
{
"x": "data/airline-ohe_x_test.npy",
"y": "data/airline-ohe_y_test.npy"
}
}
],
"num-trees": 50,
"max-depth": 16,
"max-leaf-nodes": 131072,
"max-features": 0.2
},
{
"algorithm": "et_regr",
"dtype": "float32",
"dataset": [
{
"source": "npy",
"name": "year_prediction_msd",
"training":
{
"x": "data/year_prediction_msd_x_train.npy",
"y": "data/year_prediction_msd_y_train.npy"
},
"testing":
{
"x": "data/year_prediction_msd_x_test.npy",
"y": "data/year_prediction_msd_y_test.npy"
}
},
{
"source": "npy",
"name": "airline_regression",
"training":
{
"x": "data/airline_regression_x_train.npy",
"y": "data/airline_regression_y_train.npy"
},
"testing":
{
"x": "data/airline_regression_x_test.npy",
"y": "data/airline_regression_y_test.npy"
}
}
]
},
{
"algorithm": "ridge",
"dataset": [
Expand Down
165 changes: 165 additions & 0 deletions configs/sklearn/performance/et_clsf.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
{
"common": {
"lib": "sklearn",
"algorithm": "et_clsf",
"data-format": "pandas",
"data-order": "F",
"dtype": ["float32", "float64"],
"max-features": "sqrt",
"device": ["host", "cpu", "gpu", "none"]
},
"cases": [
{
"dataset": [
{
"source": "npy",
"name": "higgs1m",
"training":
{
"x": "data/higgs1m_x_train.npy",
"y": "data/higgs1m_y_train.npy"
},
"testing":
{
"x": "data/higgs1m_x_test.npy",
"y": "data/higgs1m_y_test.npy"
}
}
],
"workload-size": "medium",
"num-trees": 50,
"max-depth": 16,
"max-leaf-nodes": 131072,
"max-features": 0.2
},
{
"device": "none",
"dataset": [
{
"source": "npy",
"name": "airline-ohe",
"training":
{
"x": "data/airline-ohe_x_train.npy",
"y": "data/airline-ohe_y_train.npy"
},
"testing":
{
"x": "data/airline-ohe_x_test.npy",
"y": "data/airline-ohe_y_test.npy"
}
}
],
"workload-size": "medium",
"num-trees": 50,
"max-depth": 16,
"max-leaf-nodes": 131072,
"max-features": 0.2
},
{
"dataset": [
{
"source": "npy",
"name": "susy",
"training":
{
"x": "data/susy_x_train.npy",
"y": "data/susy_y_train.npy"
},
"testing":
{
"x": "data/susy_x_test.npy",
"y": "data/susy_y_test.npy"
}
}
],
"workload-size": "medium",
"num-trees": 10,
"max-depth": 5
},
{
"dataset": [
{
"source": "npy",
"name": "susy",
"training":
{
"x": "data/susy_x_train.npy",
"y": "data/susy_y_train.npy"
},
"testing":
{
"x": "data/susy_x_test.npy",
"y": "data/susy_y_test.npy"
}
}
],
"workload-size": "large",
"num-trees": 100,
"max-depth": 8
},
{
"dataset": [
{
"source": "npy",
"name": "susy",
"training":
{
"x": "data/susy_x_train.npy",
"y": "data/susy_y_train.npy"
},
"testing":
{
"x": "data/susy_x_test.npy",
"y": "data/susy_y_test.npy"
}
}
],
"workload-size": "medium",
"num-trees": 20,
"max-depth": 16
},
{
"dataset": [
{
"source": "npy",
"name": "mnist",
"training":
{
"x": "data/mnist_x_train.npy",
"y": "data/mnist_y_train.npy"
},
"testing":
{
"x": "data/mnist_x_test.npy",
"y": "data/mnist_y_test.npy"
}
}
],
"workload-size": "large",
"num-trees": 100,
"max-depth": 10
},
{
"dataset": [
{
"source": "npy",
"name": "hepmass_150K",
"training":
{
"x": "data/hepmass_150K_x_train.npy",
"y": "data/hepmass_150K_y_train.npy"
},
"testing":
{
"x": "data/hepmass_150K_x_test.npy",
"y": "data/hepmass_150K_y_test.npy"
}
}
],
"workload-size": "medium",
"num-trees": 50,
"max-depth": 15
}
]
}
Loading