Skip to content

Ikomia-hub/infer_detectron2_pointrend

Repository files navigation

Algorithm icon

infer_detectron2_pointrend


Stars Website GitHub
Discord community

Run Detectron2 pointrend algorithm. It is an instance segmentation algorithm.

example

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_detectron2_pointrend", auto_connect=True)

# Run on your image  
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_detectron2_pointrend/main/icons/pointrend_example.jpg")

# Display result
display(algo.get_image_with_mask_and_graphics())

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.
  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • conf_thres (float) - Default 0.8: Box threshold for the prediction [0,1].
  • cuda (bool) - Default True: If True, CUDA-based inference (GPU). If False, run on CPU.
algo.set_parameters({
    "conf_thres": "0.5",
    "cuda": "False",
})

Note: parameter key and value should be in string format when added to the dictionary.

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_detectron2_pointrend", auto_connect=True)

# Run on your image  
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_detectron2_pointrend/main/icons/pointrend_example.jpg")

# Iterate over outputs
for output in algo.get_outputs():
    # Print information
    print(output)
    # Export it to JSON
    output.to_json()

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages