Hitting time of returning to origin is
- Hypercube (
$d$ dimensions)$h_{0,0} = \frac{2 \cdot \left( d \cdot 2^{d-1} \right)}{d} = 2^d$
- Bounded Line (
$n$ nodes)$h_{0,0} = \frac{2 \cdot \left( n - 1 \right)}{1} = 2n - 2$
- Unbounded Line
$m = \infty$ $h_{0,0} = \frac{2 \cdot \infty}{2} = \infty$
- Complete (
$n$ nodes)$h_{0,0} = \frac{2 \cdot \left( \frac{n(n - 1)}{2} \right)}{n - 1} = n$
- Complete Bipartite (
$\frac{n}{2}$ left nodes)$h_{0,0} = \frac{2 \cdot \frac{n^2}{4}}{\frac{n}{2}} = n$
- Loop (
$n$ nodes)$h_{0,0} = 1 \div \frac{1}{n} = n$