Skip to content

IanC04/Random_Walks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Random Walks

Simulation of random walks on various objects

Hitting time of returning to origin is $h_{0,0} = \frac{1}{\pi(0)}$. We also have $\pi(0) = \frac{\deg(0)}{2m}$. Thus, $h_{0,0} = \frac{2m}{\deg(0)}$.

  1. Hypercube ($d$ dimensions)
    • $h_{0,0} = \frac{2 \cdot \left( d \cdot 2^{d-1} \right)}{d} = 2^d$
  2. Bounded Line ($n$ nodes)
    • $h_{0,0} = \frac{2 \cdot \left( n - 1 \right)}{1} = 2n - 2$
  3. Unbounded Line
    • $m = \infty$
    • $h_{0,0} = \frac{2 \cdot \infty}{2} = \infty$
  4. Complete ($n$ nodes)
    • $h_{0,0} = \frac{2 \cdot \left( \frac{n(n - 1)}{2} \right)}{n - 1} = n$
  5. Complete Bipartite ($\frac{n}{2}$ left nodes)
    • $h_{0,0} = \frac{2 \cdot \frac{n^2}{4}}{\frac{n}{2}} = n$
  6. Loop ($n$ nodes)
    • $h_{0,0} = 1 \div \frac{1}{n} = n$

About

Tool to assist understanding of hitting times of random walks

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages