-
Notifications
You must be signed in to change notification settings - Fork 141
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b28f57b
commit 4aa0fa0
Showing
5 changed files
with
833 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
# this is model for fix netP and mask only left eye, right eye, nose and skin | ||
# original loss | ||
|
||
import random | ||
import numpy as np | ||
import os | ||
from . import networks | ||
# from scipy.ndimage import median_filter | ||
import jittor as jt | ||
from jittor import init | ||
from jittor import nn | ||
import jittor.transform as transform | ||
# from pdb import set_trace as st | ||
# import heapq | ||
from numpy.linalg import solve | ||
import time | ||
|
||
|
||
class AE_Model(nn.Module): | ||
def name(self): | ||
return self.name | ||
|
||
def init_loss_filter(self): | ||
flags = (True,True,True) | ||
def loss_filter(kl_loss,l2_image,l2_mask): | ||
return [l for (l,f) in zip((kl_loss,l2_image,l2_mask),flags) if f] | ||
|
||
return loss_filter | ||
|
||
def initialize(self, opt): | ||
# assert opt.vae_encoder == True | ||
self.opt = opt | ||
self.save_dir = os.path.join(opt.param, opt.name) | ||
|
||
self.name = 'AE_Model' | ||
# BaseModel.initialize(self, opt) | ||
|
||
input_nc = opt.input_nc | ||
|
||
self.output_nc = opt.output_nc | ||
self.input_nc = input_nc | ||
|
||
self.model_partial_name = opt.partial | ||
##### define networks | ||
# Generator network | ||
netG_input_nc = input_nc | ||
|
||
self.net_encoder = networks.define_part_encoder(model=self.model_partial_name, | ||
input_nc = opt.input_nc, | ||
norm=opt.norm, | ||
latent_dim = opt.latant_dim) | ||
|
||
self.net_decoder = networks.define_part_decoder(model=self.model_partial_name, | ||
output_nc = opt.input_nc, | ||
norm=opt.norm, | ||
latent_dim = opt.latant_dim) | ||
|
||
self.load_network(self.net_encoder, 'encoder_'+self.model_partial_name, 'latest', '') | ||
self.load_network(self.net_decoder, 'decoder_'+self.model_partial_name+'_image', 'latest', '') | ||
|
||
# use for test | ||
self.feature_list_male = np.fromfile(os.path.join(opt.param, opt.name) + '/man_' + opt.partial + '_feature.bin', dtype=np.float32) | ||
self.feature_list_male.shape = 6247, 512 | ||
|
||
|
||
#girl | ||
self.feature_list_female = np.fromfile(os.path.join(opt.param, opt.name) + '/female_' + opt.partial + '_feature.bin', dtype=np.float32) | ||
self.feature_list_female.shape = 11456, 512 | ||
self.feature_list = [self.feature_list_male,self.feature_list_female] | ||
|
||
def get_latent(self, input_image): | ||
|
||
input_image = (input_image-127.5)/127.5 | ||
input_image = np.expand_dims(input_image, axis=2) | ||
input_image = input_image.transpose(2,0,1) | ||
input_image = np.expand_dims(input_image, axis=0) | ||
input_image = input_image.astype('float32') | ||
input_image = transform.to_tensor(jt.array(input_image)) | ||
# print(input_image.shape) | ||
mus_mouth = self.net_encoder(input_image) | ||
|
||
return mus_mouth | ||
|
||
def get_image(self, latent_vec): | ||
|
||
# return self.net_decoder(latent_vec) | ||
|
||
fakes = self.net_decoder(latent_vec) | ||
fakes = (fakes[0,:,:,:].numpy()+1)/2 | ||
|
||
fakes = np.transpose(fakes, (1, 2, 0)) * 255.0 | ||
fakes = np.clip(fakes, 0, 255) | ||
|
||
return fakes.astype(np.uint8) | ||
|
||
def get_inter(self, input_image, nearnN=3, sex=1,w_c=1,random_=-1): | ||
generated_f = self.get_latent(input_image) | ||
generated_f = generated_f.numpy() | ||
|
||
feature_list = self.feature_list[sex] | ||
list_len = jt.array([feature_list.shape[0]]) | ||
# a = jt.random((n,3)) | ||
b = jt.code([1, nearnN], | ||
"int32", [jt.array(feature_list),jt.array(generated_f), list_len], | ||
cpu_header="#include <algorithm>", | ||
cpu_src=""" | ||
using namespace std; | ||
auto n=out_shape0, k=out_shape1; | ||
int N=@in2(0); | ||
// 使用openmp实现自动并行化 | ||
// 存储k近邻的距离和下标 | ||
vector<pair<float,int>> id(N); | ||
#pragma omp parallel for | ||
for (int j=0; j<N; j++) { | ||
auto dis = 0.0; | ||
for (int d=0; d<512; d++) | ||
{ | ||
auto dx = @in1(0,d)-@in0(j,d); | ||
dis = dis +dx*dx; | ||
} | ||
id[j] = {dis, j}; | ||
} | ||
// 使用c++算法库的nth_element排序 | ||
nth_element(id.begin(), | ||
id.begin()+k, id.end()); | ||
// 将下标输出到计图的变量中 | ||
for (int j=0; j<k; j++) | ||
@out(0,j) = id[j].second; | ||
""" | ||
) | ||
|
||
idx_sort = b[0].numpy() | ||
|
||
if nearnN==1: | ||
vec_mu = feature_list[idx_sort[0]] | ||
vec_mu = vec_mu * w_c + (1 - w_c) * generated_f | ||
return self.get_image(vec_mu), self.get_shadow_image(vec_mu, torch.ones((1,1)).data.cuda(), nearnN), vec_mu | ||
|
||
# | vg - sum( wi*vi )| et. sum(wi) = 1 | ||
# == | vg - v0 - sum( wi*vi) | et. w = [1,w1,...,wn] | ||
A_0 = [feature_list[idx_sort[0],:]] | ||
A_m = A_0 | ||
for i in range(1,nearnN): | ||
A_m = np.concatenate((A_m,[feature_list[idx_sort[i],:]]), axis=0) | ||
|
||
A_0 = np.array(A_0) | ||
A_m= np.array(A_m).T | ||
A_m0 = np.concatenate((A_m[:,1:]-A_0.T, np.ones((1,nearnN-1))*10), axis=0) | ||
|
||
A = np.dot(A_m0.T, A_m0) | ||
b = np.zeros((1, generated_f.shape[1]+1)) | ||
b[0,0:generated_f.shape[1]] = generated_f-A_0 | ||
|
||
B = np.dot(A_m0.T, b.T) | ||
|
||
x = solve(A, B) | ||
|
||
xx = np.zeros((nearnN,1)) | ||
xx[0,0] = 1 - x.sum() | ||
xx[1:,0] = x[:,0] | ||
# print(time.time()- start_time) | ||
|
||
vec_mu = np.dot(A_m, xx).T * w_c + (1-w_c)* generated_f | ||
vec_mu = jt.array(vec_mu.astype('float32')) | ||
|
||
return self.get_shadow_image(A_m.T,xx,nearnN), vec_mu | ||
|
||
def get_shadow_image(self, mus_mouth, weight, nearnN): | ||
|
||
fakes = 0 | ||
for i in range(nearnN): | ||
w_i = weight[i] | ||
if w_i<=0: | ||
continue | ||
elif w_i>0.5: | ||
w_i = 0.5 | ||
|
||
# print(i) | ||
mus_vec = jt.unsqueeze(mus_mouth[[i],:],1) | ||
|
||
fake_image = self.net_decoder(jt.array(mus_vec)) | ||
# fake_image = fake_image[[0],:,:,:] | ||
if i==0: | ||
fakes = (1-fake_image)/2* w_i | ||
else: | ||
fakes = fakes + (1-fake_image)/2 * w_i | ||
|
||
fakes = 1-fakes | ||
|
||
fakes = fakes[0,:,:,:].detach().numpy() | ||
|
||
fakes = np.transpose(fakes, (1, 2, 0)) * 255.0 | ||
fakes = np.clip(fakes, 0, 255) | ||
|
||
return fakes.astype(np.uint8) | ||
|
||
# helper loading function that can be used by subclasses | ||
def load_network(self, network, network_label, epoch_label, save_dir='', save_path=''): | ||
save_filename = '%s_net_%s.pkl' % (epoch_label, network_label) | ||
if not save_dir: | ||
save_dir = self.save_dir | ||
save_path = os.path.join(save_dir, save_filename) | ||
print("load_path",save_path) | ||
if not os.path.isfile(save_path): | ||
print('%s not exists yet!' % save_path) | ||
else: | ||
network.load(save_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import numpy as np | ||
import os | ||
from . import networks | ||
|
||
import jittor as jt | ||
from jittor import init | ||
from jittor import nn | ||
import jittor.transform as transform | ||
|
||
class Combine_Model(nn.Module): | ||
def name(self): | ||
return 'Combine_Model' | ||
|
||
def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss): | ||
flags = (True, use_gan_feat_loss, use_vgg_loss, True, True) | ||
def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake): | ||
return [l for (l,f) in zip((g_gan,g_gan_feat,g_vgg,d_real,d_fake),flags) if f] | ||
return loss_filter | ||
|
||
def initialize(self, opt): | ||
self.opt = opt | ||
self.save_dir = os.path.join(opt.param, opt.name) | ||
# BaseModel.initialize(self, opt) | ||
input_nc = opt.input_nc | ||
|
||
##### define networks | ||
# Generator network | ||
self.part = {'': (0, 0, 512), | ||
'eye1': (108, 156, 128), | ||
'eye2': (255, 156, 128), | ||
'nose': (182, 232, 160), | ||
'mouth': (169, 301, 192)} | ||
|
||
|
||
self.Decoder_Part = {} | ||
|
||
for key in self.part.keys(): | ||
self.Decoder_Part[key] = networks.define_feature_decoder(model=key, | ||
output_nc = 32, norm=opt.norm, | ||
latent_dim = opt.latant_dim) | ||
|
||
self.netG = networks.define_G(opt.num_inter_channels, opt.output_nc, opt.ngf, | ||
opt.n_downsample_global, opt.n_blocks_global, opt.norm) | ||
|
||
self.load_network(self.netG, 'G', opt.which_epoch, '') | ||
|
||
for key in self.part.keys(): | ||
self.load_network(self.Decoder_Part[key], 'DE_'+key, opt.which_epoch, '') | ||
|
||
def inference(self, part_v, image=None): | ||
|
||
eye1_code = part_v['eye1'] | ||
eye2_code = part_v['eye2'] | ||
nose_code = part_v['nose'] | ||
mouth_code = part_v['mouth'] | ||
bg_code = part_v[''] | ||
|
||
eye1_r_feature = self.Decoder_Part['eye1'](eye1_code) | ||
eye2_r_feature = self.Decoder_Part['eye2'](eye2_code) | ||
nose_r_feature = self.Decoder_Part['nose'](nose_code) | ||
mouth_r_feature = self.Decoder_Part['mouth'](mouth_code) | ||
bg_r_feature = self.Decoder_Part[''](bg_code) | ||
|
||
bg_r_feature[:, :, 301:301 + 192, 169:169 + 192] = mouth_r_feature | ||
bg_r_feature[:, :, 232:232 + 160 - 36, 182:182 + 160] = nose_r_feature[:, :, :-36, :] | ||
bg_r_feature[:, :, 156:156 + 128, 108:108 + 128] = eye1_r_feature | ||
bg_r_feature[:, :, 156:156 + 128, 255:255 + 128] = eye2_r_feature | ||
|
||
input_concat = bg_r_feature | ||
|
||
fake_image = self.netG(input_concat) | ||
|
||
# fakes = fake_image.detach().numpy() | ||
fakes = fake_image[0, :, :, :].detach().numpy() | ||
|
||
fakes = (np.transpose(fakes, (1, 2, 0)) + 1) / 2.0 * 255.0 | ||
fakes = np.clip(fakes, 0, 255) | ||
|
||
return fakes.astype(np.uint8) | ||
|
||
# helper loading function that can be used by subclasses | ||
def load_network(self, network, network_label, epoch_label, save_dir='', save_path=''): | ||
save_filename = '%s_net_%s.pkl' % (epoch_label, network_label) | ||
if not save_dir: | ||
save_dir = self.save_dir | ||
save_path = os.path.join(save_dir, save_filename) | ||
print("load_path",save_path) | ||
if not os.path.isfile(save_path): | ||
print('%s not exists yet!' % save_path) | ||
else: | ||
network.load(save_path) | ||
|
||
class InferenceModel(Combine_Model): | ||
def forward(self, inp): | ||
label, image = inp | ||
return self.inference(label, image) |
Oops, something went wrong.