- Introduction
- Perceptron
- Forward Propagation.
- Loss Functions
- Back Propagation.
- Memoization
- GD in neural network
- Improve neural network performance (ⅰ) Dropout Layer (ii) Regularization. (iii) Activation Functions (iv) Weight Initialization (v) Batch Normalization (vi) Optimizers
- CNN Introduction
- Padding and Strides
- Pooling Layer
- Back propagation in CNN
- Pre-trained models
- Transfer Learning
- RNN Introduction
- Forward Propagation
- Types of RNN
- Backward Propagation
- Problems with RNN
- LSTM Introduction
- LSTM Architecture.
- GRU
- Deep RNN
- Encoder-Decoder
- Attention Mechanism
- Transformers Introduction
- Self Attention
- Bahdanau and Luong Attention.
- Multi-Head Attention
- positional Encoding.
- Layer Normalization
- Masked Multi-Head Attention
- Cross Attention
- Transformer's encoder Architecture.
- Transformen's Decoder Architecture.