-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Jack Huang
committed
Feb 11, 2022
0 parents
commit ad1c9a2
Showing
2 changed files
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# Guitar tunner | ||
This a guitar tunner program based on python. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import pyaudio | ||
import numpy as np | ||
from scipy import signal | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
|
||
END = False | ||
|
||
def d2r(degree): return degree * np.pi / 180. | ||
|
||
def on_press(event): | ||
global END, in_stream, p | ||
# print('Quit') | ||
if event.key == 'q': | ||
END = True | ||
plt.close() | ||
in_stream.stop_stream() | ||
in_stream.close() | ||
p.terminate() | ||
|
||
#============================================= | ||
# Notes_guitar = ['E2','A2','D3','G3','B3','E4'] | ||
Notes_guitar = ['E','A','D','G','B','E'] | ||
freq_guitar = np.array([82.4069, 110.0000, 146.8324,\ | ||
195.9977, 246.9417, 329.6276]) | ||
|
||
freq_ticks = np.array([0, 82.4069, 90, 110.0000, 146.8324, 180,\ | ||
195.9977, 246.9417, 270, 329.6276]) | ||
tick_notes = ['0 Hz','E','90','A','D','180','G','B','270','E'] | ||
|
||
# freq_ticks = np.array([82.4069, 110.0000, 146.8324,\ | ||
# 195.9977, 246.9417, 329.6276]) | ||
# tick_notes = ['E','A','D','G','B','E'] | ||
#============================================= | ||
|
||
FORMAT = pyaudio.paInt16 # 16 bit int | ||
CHANNELS = 1 # Number of input channels | ||
SAMPLE_RATE = 44100 # Sampling rate/frequency (Hz)? | ||
CHUNK = 1024*16*2 # Number of sample frames per buffer? | ||
SAMPLE_INTERVAL = 1/SAMPLE_RATE | ||
|
||
p = pyaudio.PyAudio() | ||
in_stream = p.open(format=FORMAT, channels=CHANNELS, rate=SAMPLE_RATE,\ | ||
input=True, frames_per_buffer=CHUNK) | ||
|
||
r_panel = 30 | ||
pointer_len = r_panel - 1 | ||
pointer_color = '#2b2b23' | ||
pointer_width = 1 | ||
spectrum_base = 15 | ||
divide_factor = 40 | ||
mpl.rcParams['toolbar'] = 'None' | ||
fig = plt.figure() | ||
fig.patch.set_facecolor('#958f82') | ||
fig.canvas.toolbar_visible = False | ||
ax = plt.subplot(projection='polar') | ||
ax.set_facecolor("#818077") | ||
plt.get_current_fig_manager().set_window_title('Guitar Tuner') | ||
fig.canvas.mpl_connect('key_press_event', on_press) | ||
ax.set_xticks(d2r(freq_ticks)) | ||
ax.set(xticklabels=tick_notes) | ||
ax.set_ylim(0,30) | ||
ax.set_yticks([30]) | ||
ax.set(yticklabels=[]) | ||
# plt.grid(linestyle='--') | ||
plt.grid() | ||
# ax.tick_params(left=False) | ||
|
||
scale = np.arange(0, 360, 10) | ||
scale_end_r = r_panel | ||
scale_start_r = r_panel - 1 | ||
scale_w_min = 0.7 | ||
scale_w_max = 2.0 | ||
|
||
# Center | ||
ax.scatter(0, 0, c=pointer_color, s=32, cmap='hsv', alpha=1) | ||
|
||
for s in scale: | ||
ax.vlines(d2r(s), scale_end_r, scale_start_r, colors=pointer_color, linewidth= scale_w_min, zorder=3) | ||
|
||
for f in freq_guitar: | ||
ax.vlines(d2r(f), scale_end_r, scale_start_r, colors=pointer_color, linewidth= scale_w_max, zorder=3) | ||
|
||
|
||
|
||
# Cut freq. of band pass filter | ||
lowcut, highcut = 75.0, 1250.0 | ||
freq_range = [75, 350] | ||
freq = np.fft.rfftfreq(CHUNK, d=1./SAMPLE_RATE) | ||
mask = (freq < freq_range[0]) + (freq > freq_range[1]) | ||
|
||
mask_plot = freq < 360 | ||
freq_to_plot = freq[mask_plot] | ||
line0, = ax.plot(d2r(freq_to_plot), 50*np.random.rand(len(freq_to_plot)), color=pointer_color, linewidth= pointer_width) | ||
|
||
plt.ion() | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
while END==False: | ||
buffer = in_stream.read(CHUNK, exception_on_overflow = False) | ||
y = np.frombuffer(buffer, dtype = np.int16) | ||
Y = np.fft.rfft(y)/CHUNK | ||
Y_a = np.abs(Y) | ||
sos = signal.butter(10, [lowcut, highcut], 'bp', fs=SAMPLE_RATE, output='sos') | ||
filtered = signal.sosfilt(sos, y) | ||
FILTERED = np.fft.rfft(filtered)/CHUNK | ||
FILTERED_a = np.abs(FILTERED) | ||
line0.set_ydata(spectrum_base+FILTERED_a[mask_plot]/divide_factor) | ||
S_a = FILTERED_a | ||
S_a[mask] = 0 | ||
main_freq = freq[np.argmax(S_a)] | ||
|
||
vline = ax.vlines(d2r(main_freq), 0 , pointer_len, colors=pointer_color, linewidth= pointer_width, zorder=3) | ||
|
||
fig.canvas.draw() | ||
fig.canvas.flush_events() | ||
plt.pause(0.0001) | ||
vline.remove() |