The official code repository for our CVPR 2021 paper "Diffusion Probabilistic Models for 3D Point Cloud Generation".
[Step 1] Setup conda environment
# Create the environment
conda env create -f env.yml
# Activate the environment
conda activate dpm-pc-gen
[Step 2] Compile the evaluation module
nvcc
10.0. Errors might occur if you use other versions (for example 10.1).
💡 You might specify your nvcc
path here.
# Please ensure the conda environment `dpm-pc-gen` is activated.
cd ./evaluation/pytorch_structural_losses
make clean
make
# Return to the project directory
cd ../../
Datasets and pretrained models are available at: https://drive.google.com/drive/folders/1Su0hCuGFo1AGrNb_VMNnlF7qeQwKjfhZ
# Train an auto-encoder
python train_ae.py
# Train a generator
python train_gen.py
You may specify the value of arguments. Please find the available arguments in the script.
Note that --categories
can take all
(use all the categories in the dataset), airplane
, chair
(use a single category), or airplane,chair
(use multiple categories, separated by commas).
# Test an auto-encoder
python test_ae.py --ckpt ./pretrained/AE_all.pt --categories all
# Test a generator
python test_gen.py --ckpt ./pretrained/GEN_airplane.pt --categories airplane
@inproceedings{luo2021diffusion,
author = {Luo, Shitong and Hu, Wei},
title = {Diffusion Probabilistic Models for 3D Point Cloud Generation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}