-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4693e3a
commit dab8bd7
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
<!DOCTYPE html> | ||
<html lang="zh"> | ||
<head> | ||
<meta charset="UTF-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
<link rel="stylesheet" type="text/css" href="wechat.css"> | ||
</head> | ||
<body> | ||
<section class="header"> | ||
<h1>大气环境遥感论文速递</h1> | ||
<section class="date">2025/01/30</section> | ||
</section> | ||
<section id="papers-container"><section class="paper-card"> | ||
<section class="paper-title">Dispersive heterodyne cavity ring-down spectroscopy exploiting eigenmode frequencies for high-fidelity measurements</section> | ||
<section class="paper-authors">Agata Cygan, Szymon Wójtewicz, Hubert Jóźwiak, Grzegorz Kowzan, Nikodem Stolarczyk, Katarzyna Bielska, Piotr Wcisło, Roman Ciuryło, Daniel Lisak</section> | ||
<section class="paper-journal">Science Advances</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.1126/sciadv.adp8556" target="_blank">https://doi.org/10.1126/sciadv.adp8556</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">高精度光谱</span> | ||
<span class="topic-tag">腔衰荡光谱</span> | ||
<span class="topic-tag">痕量气体检测</span> | ||
</section> | ||
<section class="abstract-content">《利用本征模频率进行高保真测量的色散外差腔衰荡光谱》一文提出了一种新的高精度测量气体吸收光谱的方法,称为色散外差腔衰荡光谱。该方法利用腔衰荡过程中光场的**频率信息**,而非仅测量光强的衰减,实现了亚千分之一的测量精度。研究通过对**CO**和**HD**分子吸收光谱的测量验证了该方法的精度和长期重复性,表明其在痕量气体检测和大气成分分析方面具有巨大潜力。该方法展示了在需要高精度测量大气微量成分的环境遥感应用中的潜在价值,为大气遥感和气体标准建立提供了新的技术手段。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Analysis of the long-range transport of the volcanic plume from the 2021 Tajogaite/Cumbre Vieja eruption to Europe using TROPOMI and ground-based measurements</section> | ||
<section class="paper-authors">Pascal Hedelt, Jens Reichardt, Felix Lauermann, Benjamin Weiß, Nicolas Theys, Alberto Redondas, Africa Barreto, Omaira Garcia, Diego Loyola</section> | ||
<section class="paper-journal">Atmospheric Chemistry and Physics</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.5194/acp-25-1253-2025" target="_blank">https://doi.org/10.5194/acp-25-1253-2025</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">火山气溶胶</span> | ||
<span class="topic-tag">二氧化硫</span> | ||
<span class="topic-tag">长距离传输</span> | ||
</section> | ||
<section class="abstract-content">《利用TROPOMI和地面测量分析2021年塔霍盖特/库姆布雷维亚火山喷发火山羽流向欧洲的远程传输》一文,使用地面观测和**Sentinel-5P**卫星的**TROPOMI**数据,研究了2021年拉帕尔马岛**Tajogaite**火山喷发对欧洲大气环境的影响。研究重点分析了火山羽流中的**二氧化硫**(**SO2**)的垂直柱浓度和高度,并利用**HYSPLIT**模型追踪了其长距离传输路径。此外,研究还利用**激光雷达**数据,通过新的反演方法分析了火山气溶胶的微物理特性。该研究结合多种观测手段和模型模拟,深入探讨了火山喷发对大气成分和空气质量的影响,表明大气环境遥感技术结合模型可以有效分析火山爆发对大气成分的影响。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Transport into the polar stratosphere from the Asian monsoon region</section> | ||
<section class="paper-authors">Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen</section> | ||
<section class="paper-journal">Atmospheric Chemistry and Physics</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.5194/acp-25-1289-2025" target="_blank">https://doi.org/10.5194/acp-25-1289-2025</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">大气输送</span> | ||
<span class="topic-tag">极地污染</span> | ||
<span class="topic-tag">示踪气体</span> | ||
</section> | ||
<section class="abstract-content">这篇名为《亚洲季风区向极地平流层输送》的论文,利用**SF6**作为示踪气体,结合**CLaMS**化学输运模型和**ACE-FTS**卫星观测数据,研究了亚洲季风区边界层空气团向极地平流层的输送过程及其影响。研究发现,亚洲季风区向极地输送的空气质量分数比南半球同纬度地区高约1.5倍,主要发生在20公里以上,时间尺度超过两年。分析表明,约20%的极地平流层**SF6**来源于亚洲季风区边界层。该研究揭示了亚洲季风区对全球大气环境,特别是极地地区大气成分的影响,为理解污染物输送和来源提供了重要依据,展示了大气环境遥感技术在研究大气成分和输送过程中的应用。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Long-term changes in the thermodynamic structure of the lowermost stratosphere inferred from reanalysis data</section> | ||
<section class="paper-authors">Franziska Weyland, Peter Hoor, Daniel Kunkel, Thomas Birner, Felix Plöger, Katharina Turhal</section> | ||
<section class="paper-journal">Atmospheric Chemistry and Physics</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.5194/acp-25-1227-2025" target="_blank">https://doi.org/10.5194/acp-25-1227-2025</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">平流层</span> | ||
<span class="topic-tag">再分析数据</span> | ||
<span class="topic-tag">热力学结构</span> | ||
</section> | ||
<section class="abstract-content">《从再分析数据推断最低平流层热力学结构的长期变化》这篇论文利用1979年至2019年的再分析数据,研究了最低平流层(**LMS**)热力学结构的长期变化。研究发现,人为气候变化和平流层**臭氧**的恢复导致**LMS**结构发生了显著变化,同时也表明了大尺度环流的变化。研究使用**ERA5**、**ERA-Interim**、**MERRA-2**、**JRA-55**和**JRA-3Q**五种现代再分析资料,并采用动态线性回归模型进行趋势分析。结果显示,**LMS**的上下边界均呈现上升趋势。研究分析平流层和对流层顶的变化,与大气环境遥感技术中的高度信息提取和分析直接相关,显示了再分析数据结合遥感观测在研究大气结构长期变化中的重要应用。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Regional modeling of surface solar radiation, aerosol, and cloud cover spatial variability and projections over northern France and Benelux</section> | ||
<section class="paper-authors">Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, Véronique Riffault</section> | ||
<section class="paper-journal">Atmospheric Chemistry and Physics</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.5194/acp-25-1307-2025" target="_blank">https://doi.org/10.5194/acp-25-1307-2025</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">地表太阳辐射</span> | ||
<span class="topic-tag">区域气候模型</span> | ||
<span class="topic-tag">气溶胶</span> | ||
</section> | ||
<section class="abstract-content">《法国北部和比荷卢地区地表太阳辐射、气溶胶和云量空间变率及预测的区域建模》一文,使用**ALADIN**区域气候模型,分辨率为12.5公里,研究了法国北部和比荷卢地区地表太阳辐射(**SSR**)的时空变化,并预测了未来的变化趋势。该模型考虑了**气溶胶**、**云量**和水汽的影响。研究发现,人为气溶胶和云层显著影响**SSR**。在未来的气候情景下,**SSP3-7.0**情景下**SSR**将大幅下降,而**SSP1-1.9**情景下,气溶胶减少导致晴空**SSR**增加,但全天**SSR**变化受地域限制。该研究强调了人为气溶胶排放对**SSR**时空变化的季节性和地域性影响,以及云量和水汽的调节作用,说明大气环境遥感技术通过分析气溶胶和云量等大气成分,可以进行地表太阳辐射反演和气候变化预测。</section> | ||
</section> | ||
</section> | ||
<section class="footer"> | ||
论文总结由AI生成,如有失偏颇,敬请指正!<br>关注本公众号,获取更多大气环境遥感科学研究动态 | ||
</section> | ||
</body> | ||
</html> |