-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
913b3bf
commit 5d6dd00
Showing
1 changed file
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
<!DOCTYPE html> | ||
<html lang="zh"> | ||
<head> | ||
<meta charset="UTF-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
<link rel="stylesheet" type="text/css" href="wechat.css"> | ||
</head> | ||
<body> | ||
<section class="header"> | ||
<h1>大气环境遥感论文速递</h1> | ||
<section class="date">2025/01/27</section> | ||
</section> | ||
<section id="papers-container"><section class="paper-card"> | ||
<section class="paper-title">Deep Neural Networks for Refining Vertical Modeling of Global Tropospheric Delay</section> | ||
<section class="paper-authors">Peng Yuan, Kyriakos Balidakis, Jungang Wang, Pengfei Xia, Jian Wang, Mingyuan Zhang, Weiping Jiang, Harald Schuh, Jens Wickert, Zhiguo Deng</section> | ||
<section class="paper-journal">Geophysical Research Letters</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.1029/2024GL111404" target="_blank">https://doi.org/10.1029/2024GL111404</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">对流层延迟</span> | ||
<span class="topic-tag">深度神经网络</span> | ||
<span class="topic-tag">数值天气模型</span> | ||
</section> | ||
<section class="abstract-content">该论文题为《用于改进全球对流层延迟垂直模型的深度神经网络》,研究重点是利用<b>深度神经网络</b>(DNN)改进全球对流层延迟的垂直建模。传统模型在捕捉大气状态的复杂垂直变化方面存在局限性。研究人员利用<b>数值天气模型</b>(NWM)生成的数据,重建了高达14公里高度的三维<b>天顶静力延迟</b>(ZHD)和<b>天顶湿延迟</b>(ZWD)。与传统的分析模型相比,DNN方法在精度上显著提升,平均精度分别达到0.4毫米和0.8毫米,均方根误差在全球范围内分别降低了63%和36%。这项研究为提高基于GNSS等技术的对流层延迟校正精度提供了新的方法,有助于更准确地观测和分析对流层水汽等大气成分,对于地球观测和大气环境监测具有重要意义。该研究数据主要来源于NWM,通过DNN算法进行建模,并通过与传统分析模型对比来验证模型的有效性。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Light Absorbing Particles Deposited to Snow Cover Across the Upper Colorado River Basin, Colorado, 2013–2016: Interannual Variations From Multiple Natural and Anthropogenic Sources</section> | ||
<section class="paper-authors">Richard L. Reynolds, Harland L. Goldstein, Raymond Kokaly, Heather Lowers, George N. Breit, Bruce M. Moskowitz, Peat Solheid, Jeff Derry, Corey R. Lawrence</section> | ||
<section class="paper-journal">Journal of Geophysical Research: Atmospheres</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.1029/2024JD041676" target="_blank">https://doi.org/10.1029/2024JD041676</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">光吸收颗粒物</span> | ||
<span class="topic-tag">光谱反射率</span> | ||
<span class="topic-tag">积雪融化</span> | ||
</section> | ||
<section class="abstract-content">《2013-2016年科罗拉多河上游流域积雪中沉积的光吸收颗粒物:来自多种自然和人为来源的年际变化》研究了2013年至2016年科罗拉多河上游盆地积雪中沉积的<b>光吸收颗粒物</b>(LAPs)。通过实验室测量的<b>光谱反射率</b>、化学、物理和磁性特性对比,研究发现LAPs主要来自三个方面:含碳物质(如<b>黑碳</b>、有机物),黑色岩石和矿物颗粒(以磁铁矿为代表),以及氧化铁矿物。不同类型的氧化铁矿物反映了不同年份的来源区域贡献差异,与区域性沙尘暴频率和传输路径有关。尽管区域性沙漠尘埃是矿物尘埃的主要来源,但人为来源的逃逸性污染物也贡献了相当数量的LAPs。该研究通过分析积雪样本的成分,研究了LAPs的来源和影响,并量化了其对<b>积雪融化</b>和下游水资源管理的挑战。研究方法是通过实验室分析积雪样本的光谱特性、化学成分以及物理和磁性特性,结合气象数据分析颗粒物的来源。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Treasure Bowl: PM2.5 Aggregation in the Eye of a Tropical Cyclone</section> | ||
<section class="paper-authors">Ruiwen Wang, Hao Wang, Chunlin Zhang, Daocheng Gong, Fangyuan Ma, Congrong He, Duohong Chen, Jin Shen, Yan Zhou, Zoran Ristovski, Shaw Chen Liu, Boguang Wang</section> | ||
<section class="paper-journal">Geophysical Research Letters</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.1029/2024GL110696" target="_blank">https://doi.org/10.1029/2024GL110696</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">PM2.5</span> | ||
<span class="topic-tag">热带气旋</span> | ||
<span class="topic-tag">质量重建</span> | ||
</section> | ||
<section class="abstract-content">《宝盒:热带气旋眼中的PM2.5聚集》这篇论文研究了热带气旋登陆期间<b>PM2.5</b>浓度的变化及其来源。研究发现,在南海地区,一个热带气旋登陆岛屿后,<b>PM2.5</b>浓度从4 µg/m³ 急剧上升到44 µg/m³。通过<b>质量重建</b>分析,发现主要来源为<b>海盐</b>,并且与当地陆源沉积物有关。气旋眼壁的Na+/Cl-比率约为5:1,表明存在氯耗损。同时,眼内Cl-浓度和Si/Fe等摩尔比迅速增加,在气旋眼中达到峰值,揭示了海洋颗粒物的“宝盒式”分级聚集过程。研究利用<b>地面观测</b>数据和质量重建技术,分析了热带气旋全过程中的海陆传输,为理解极端空气污染事件提供了新的视角和数据支持。研究方法主要通过地面观测和化学成分分析,并结合质量重建方法,研究气旋登陆过程中大气成分的变化。</section> | ||
</section> | ||
<section class="paper-card"> | ||
<section class="paper-title">Constraining the Acetone Photolysis Quantum Yield: Current Insights and Atmospheric Chemistry Implications</section> | ||
<section class="paper-authors">M. F. Link, J. Brewer, D. K. Farmer, A. R. Ravishankara</section> | ||
<section class="paper-journal">Journal of Geophysical Research: Atmospheres</section> | ||
<section class="paper-doi"><a href="https://doi.org/10.1029/2024JD042216" target="_blank">https://doi.org/10.1029/2024JD042216</a></section> | ||
<section class="topic-tags"> | ||
<span class="topic-tag">丙酮光解</span> | ||
<span class="topic-tag">HOx自由基</span> | ||
<span class="topic-tag">量子产额</span> | ||
</section> | ||
<section class="abstract-content">《约束丙酮光解量子产率:当前见解与大气化学影响》研究探讨了<b>丙酮光解</b>对上对流层<b>HOx自由基</b>(羟基和氢过氧基自由基)产生的影响。由于缺乏对<b>丙酮光解量子产额</b>(Φacetone)在光化学活性区(λ>300nm)的测量,丙酮光解对HOx产生的贡献程度尚不清楚。研究者利用已发表数据,通过Stern-Volmer分析和最新的光物理模型模拟,推导了温度和压力相关的Φacetone参数化,并与现有模型进行了对比。尽管新的参数化在较长波长区域预测了非零的Φacetone,但对HOx产生的模拟影响与现有参数化相比差异不大。文章强调,需要更多直接的温度和压力相关的Φacetone测量数据。该研究与大气成分分析和空气质量模型的改进密切相关,通过分析丙酮光解机制,可以提高对大气中HOx自由基的理解和预测能力,最终可以提高卫星观测数据的解释能力。</section> | ||
</section> | ||
</section> | ||
<section class="footer"> | ||
论文总结由AI生成,如有失偏颇,敬请指正!<br>关注本公众号,获取更多大气环境遥感科学研究动态 | ||
</section> | ||
</body> | ||
</html> |