This repository is an implementation in python code of the MPC gait generation described in the "MPC for Humanoid Gait Generation: Stability and Feasibility"
matplotlib
numpy
scipy
Constrains:Kinematic Constrains,ZMP Position Constrains,Stability Constraint and ZMP Velocity Constraint
$$ \pm \binom{0}{\ell} - \frac{1}{2} \binom{d_{a,x}}{d_{a,y}} \leq R_{j-1}^T \binom{\hat{x}_f^j - \hat{x}_f^{j-1}}{\hat{y}f^j - \hat{y}f^{j-1}} \leq \pm \binom{0}{\ell} + \frac{1}{2} \binom{d{a,x}}{d{a,y}} $$
$$ -\frac{1}{2} \binom{d_{z,x}}{d_{z,y}} \leq R_j^T \begin{pmatrix} \Delta t \sum_{l=0}^i \dot{x}z^{k+l} - x_f^j \ \Delta t \sum{l=0}^i \dot{y}z^{k+l} - y_f^j \end{pmatrix} + R_j^T \begin{pmatrix} x_z^k \ y_z^k \end{pmatrix} \leq \frac{1}{2} \binom{d{z,x}}{d_{z,y}} $$
and
$$ -\frac{1}{2} \binom{d_{z,x}}{d_{z,y}} \leq R_{mc}^T \begin{pmatrix} \Delta t \sum_{l=0}^i \dot{x}z^{k+l} - x{mc}^i \ \Delta t \sum_{l=0}^i \dot{y}z^{k+l} - y{mc}^i \end{pmatrix} + R_{mc}^T \begin{pmatrix} x_z^k \ y_z^k \end{pmatrix} \leq \frac{1}{2} \binom{d_{z,x}}{d_{z,y}} $$
$$ \sum_{i=0}^{C-1} e^{-i \eta \delta} \dot{x}z^{k+i} = - \sum{i=C}^{\infty} e^{-i \eta \delta} \dot{x}_z^{k+i} + \frac{\eta}{1 - e^{-\eta \delta}} (x_u^k - x_z^k) $$