Implement of "Deformable-Medical-Image-Registration-via-Multiveiw-Adversarial-Learning"
The required packages are located in requirements
.
pip install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=10.2 -c pytorch
pip install -r requirement.txt
BTCV Datasets Link : https://www.synapse.org/Synapse:syn3193805/wiki/217789
Abdominal 1K Datasets Link : https://github.com/JunMa11/AbdomenCT-1K
Organs consist of Spleen, Kidney, Gallbladder, Esophagus, Liver, Stomach, Aorta, Inferior Vena Cava, Pancreas, Right and Left Adrenal Gland.
LPBA40 Link: https://www.loni.usc.edu/research/atlas_downloads
Brain MRI contains 40 T1-weighted MR images annotated with 56 subcortical ROIs. We combine the 56 labels into 7 region labels (i.e., Frontal Lobe, Parietal Lobe, Occipital Lobe, Temporal Lobe, Cingulate Lobe, Putamen, and Hippocampus) defined according to the main clinical structures of the brain.
- Before training, pre-processing and initial affine registration must be performed.
- For pre-processing, reference
preprocessing_BTCV_1K.py
,preprocessing_lpba40.py
. - For initial affine registration, reference
Train_Affine.py
.
- For pre-processing, reference
python Train_M_Adv.py \
--affine_model experiments/affine \
--dataset_dir Dataset/BTCV_Abdominal_1k \
--save_validation_img True \
--max_epoch 100 \
python Inference_M_Adv.py --affine_model experiments/affine --dataset_dir Dataset/BTCV_Abdominal_1k
- 3D Visualization
- 2D Visualization
- 2D Visualization