Skip to content

GreyDGL/PentestGPT

Repository files navigation

Contributors Forks Stargazers Issues MIT License Discord


PentestGPT

AI-Powered Autonomous Penetration Testing Agent
Published at USENIX Security 2024

Official Website: pentestgpt.com »

Research Paper · Report Bug · Request Feature

GreyDGL%2FPentestGPT | Trendshift


Demo

Installation

Installation Demo

Watch on YouTube

PentestGPT in Action

PentestGPT Demo

Watch on YouTube


What's New in v1.0 (Agentic Upgrade)

  • Autonomous Agent - Agentic pipeline for intelligent, autonomous penetration testing
  • Session Persistence - Save and resume penetration testing sessions
  • Docker-First - Isolated, reproducible environment with security tools pre-installed

In Progress: Multi-model support for OpenAI, Gemini, and other LLM providers


Features

  • AI-Powered Challenge Solver - Leverages LLM advanced reasoning to perform penetration testing and CTFs
  • Live Walkthrough - Tracks steps in real-time as the agent works through challenges
  • Multi-Category Support - Web, Crypto, Reversing, Forensics, PWN, Privilege Escalation
  • Real-Time Feedback - Watch the AI work with live activity updates
  • Extensible Architecture - Clean, modular design ready for future enhancements

Quick Start

Prerequisites

Installation

# Clone and build
git clone --recurse-submodules https://github.com/GreyDGL/PentestGPT.git
cd PentestGPT
make install

# Configure authentication (first time only)
make config

# Connect to container
make connect

Note: The --recurse-submodules flag downloads the benchmark suite. If you already cloned without it, run: git submodule update --init --recursive

Try a Benchmark

cd benchmark/standalone-xbow-benchmark-runner
python3 run_benchmarks.py --range 1-1 --pattern-flag

See Benchmark Documentation for detailed usage.

Commands Reference

Command Description
make install Build the Docker image
make config Configure API key (first-time setup)
make connect Connect to container (main entry point)
make stop Stop container (config persists)
make clean-docker Remove everything including config

Usage

# Interactive TUI mode (default)
pentestgpt --target 10.10.11.234

# Non-interactive mode
pentestgpt --target 10.10.11.100 --non-interactive

# With challenge context
pentestgpt --target 10.10.11.50 --instruction "WordPress site, focus on plugin vulnerabilities"

Keyboard Shortcuts: F1 Help | Ctrl+P Pause/Resume | Ctrl+Q Quit


Using Local LLMs

PentestGPT supports routing requests to local LLM servers (LM Studio, Ollama, text-generation-webui, etc.) running on your host machine.

Prerequisites

  • Local LLM server with an OpenAI-compatible API endpoint
    • LM Studio: Enable server mode (default port 1234)
    • Ollama: Run ollama serve (default port 11434)

Setup

# Configure PentestGPT for local LLM
make config
# Select option 4: Local LLM

# Start your local LLM server on the host machine
# Then connect to the container
make connect

Customizing Models

Edit scripts/ccr-config-template.json to customize:

  • localLLM.api_base_url: Your LLM server URL (default: host.docker.internal:1234)
  • localLLM.models: Available model names on your server
  • Router section: Which models handle which operations
Route Purpose Default Model
default General tasks openai/gpt-oss-20b
background Background operations openai/gpt-oss-20b
think Reasoning-heavy tasks qwen/qwen3-coder-30b
longContext Large context handling qwen/qwen3-coder-30b
webSearch Web search operations openai/gpt-oss-20b

Troubleshooting

  • Connection refused: Ensure your LLM server is running and listening on the configured port
  • Docker networking: Use host.docker.internal (not localhost) to access host services from Docker
  • Check CCR logs: Inside the container, run cat /tmp/ccr.log

Telemetry

PentestGPT collects anonymous usage data to help improve the tool. This data is sent to our Langfuse project and includes:

  • Session metadata (target type, duration, completion status)
  • Tool execution patterns (which tools are used, not the actual commands)
  • Flag detection events (that a flag was found, not the flag content)

No sensitive data is collected - command outputs, credentials, or actual flag values are never transmitted.

Opting Out

# Via command line flag
pentestgpt --target 10.10.11.234 --no-telemetry

# Via environment variable
export LANGFUSE_ENABLED=false

Benchmarks

PentestGPT includes 104 XBOW validation benchmarks for comprehensive testing and evaluation.

cd benchmark/standalone-xbow-benchmark-runner

python3 run_benchmarks.py --range 1-10 --pattern-flag   # Run benchmarks 1-10
python3 run_benchmarks.py --all --pattern-flag          # Run all 104 benchmarks
python3 run_benchmarks.py --retry-failed                # Retry failed benchmarks
python3 run_benchmarks.py --dry-run --range 1-5         # Preview without executing

Performance Highlights

PentestGPT achieved an 86.5% success rate (90/104 benchmarks) on the XBOW validation suite:

  • Cost: Average $1.11, Median $0.42 per successful benchmark
  • Time: Average 6.1 minutes, Median 3.3 minutes per successful benchmark
  • Success rates by difficulty:
    • Level 1: 91.1%
    • Level 2: 74.5%
    • Level 3: 62.5%

For detailed benchmark results, analysis, and automated testing instructions, see the Benchmark Documentation.


Legacy Version

The previous multi-LLM version (v0.15) supporting OpenAI, Gemini, Deepseek, and Ollama is archived in legacy/:

cd legacy && pip install -e . && pentestgpt --reasoning gpt-4o

Citation

If you use PentestGPT in your research, please cite our paper:

@inproceedings{299699,
  author = {Gelei Deng and Yi Liu and Víctor Mayoral-Vilches and Peng Liu and Yuekang Li and Yuan Xu and Tianwei Zhang and Yang Liu and Martin Pinzger and Stefan Rass},
  title = {{PentestGPT}: Evaluating and Harnessing Large Language Models for Automated Penetration Testing},
  booktitle = {33rd USENIX Security Symposium (USENIX Security 24)},
  year = {2024},
  isbn = {978-1-939133-44-1},
  address = {Philadelphia, PA},
  pages = {847--864},
  url = {https://www.usenix.org/conference/usenixsecurity24/presentation/deng},
  publisher = {USENIX Association},
  month = aug
}

License

Distributed under the MIT License. See LICENSE.md for more information.

Disclaimer: This tool is for educational purposes and authorized security testing only. The authors do not condone any illegal use. Use at your own risk.


Acknowledgments

(back to top)