Skip to content

GreenCUBIC/MethylSight2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Running MethylSight

Requirements

  • A Unix-style platform (ideally, Linux)
  • Docker

With Docker

  1. Install Docker on your system.

  2. Build our Docker image (it is large, at ~15 GB).

git clone https://github.com/GreenCUBIC/MethylSight2.git
cd MethylSight2
docker build -t methylsight2 .
  1. Create an empty (blank) output file where the results should be stored.
touch /path/to/my/results/file.csv
  1. Run MethylSight 2.0

If a GPU is available:

input=<ABSOLUTE_PATH_TO_INPUT_FILE>;output=<ABSOLUTE_PATH_TO_OUTPUT_FILE>;docker run -v "$input:/input.fasta:ro" --mount type=bind,source="$output",target="/output.csv" --gpus 1 methylsight2 "/env/bin/python3 model.py -i /input.fasta -w weights.ckpt -o /output.csv"

If no GPUs are available:

input=<ABSOLUTE_PATH_TO_INPUT_FILE>;output=<ABSOLUTE_PATH_TO_OUTPUT_FILE>;docker run -v "$input:/input.fasta:ro" --mount type=bind,source="$output",target="/output.csv" methylsight2 "/env/bin/python3 model.py -i /input.fasta -w weights.ckpt -o /output.csv"

The model weights can be downloaded here.

Huggingface

curl -X POST -H "Content-Type: application/json" -d '{"sequence": "SEQUENCE"}' https://fcharih-methylsight2.hf.space/predict

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published