Skip to content

Commit

Permalink
add video streaming samples (#2047)
Browse files Browse the repository at this point in the history
* add video streaming samples

* address review comments

* flake

* flake

* flake
  • Loading branch information
dizcology authored Mar 18, 2019
1 parent 0acc792 commit da04c4b
Show file tree
Hide file tree
Showing 3 changed files with 438 additions and 3 deletions.
358 changes: 357 additions & 1 deletion video/cloud-client/analyze/beta_snippets.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,22 @@
Usage Examples:
python beta_snippets.py transcription \
gs://python-docs-samples-tests/video/googlework_short.mp4
python beta_snippets.py video-text-gcs \
gs://python-docs-samples-tests/video/googlework_short.mp4
python beta_snippets.py track-objects /resources/cat.mp4
python beta_snippets.py track-objects resources/cat.mp4
python beta_snippets.py streaming-labels resources/cat.mp4
python beta_snippets.py streaming-shot-change resources/cat.mp4
python beta_snippets.py streaming-objects resources/cat.mp4
python beta_snippets.py streaming-explicit-content resources/cat.mp4
python beta_snippets.py streaming-annotation-storage resources/cat.mp4 \
gs://mybucket/myfolder
"""

import argparse
Expand Down Expand Up @@ -274,6 +287,316 @@ def track_objects(path):
return object_annotations


def detect_labels_streaming(path):
# [START video_streaming_label_detection_beta]
from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.types.StreamingVideoConfig(
feature=(videointelligence.enums.
StreamingFeature.STREAMING_LABEL_DETECTION))

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
while True:
data = video_file.read(chunk_size)
if not data:
break
stream.append(data)

def stream_generator():
yield config_request
for chunk in stream:
yield videointelligence.types.StreamingAnnotateVideoRequest(
input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

# Each response corresponds to about 1 second of video.
for response in responses:
# Check for errors.
if response.error.message:
print(response.error.message)
break

# Get the time offset of the response.
frame = response.annotation_results.label_annotations[0].frames[0]
time_offset = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
print('{}s:'.format(time_offset))

for annotation in response.annotation_results.label_annotations:
description = annotation.entity.description
# Every annotation has only one frame
confidence = annotation.frames[0].confidence
print('\t{} (confidence: {})'.format(description, confidence))
# [END video_streaming_label_detection_beta]


def detect_shot_change_streaming(path):
# [START video_streaming_shot_change_detection_beta]
from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.types.StreamingVideoConfig(
feature=(videointelligence.enums.StreamingFeature.
STREAMING_SHOT_CHANGE_DETECTION))

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
while True:
data = video_file.read(chunk_size)
if not data:
break
stream.append(data)

def stream_generator():
yield config_request
for chunk in stream:
yield videointelligence.types.StreamingAnnotateVideoRequest(
input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

# Each response corresponds to about 1 second of video.
for response in responses:
# Check for errors.
if response.error.message:
print(response.error.message)
break

for annotation in response.annotation_results.shot_annotations:
start = (annotation.start_time_offset.seconds +
annotation.start_time_offset.nanos / 1e9)
end = (annotation.end_time_offset.seconds +
annotation.end_time_offset.nanos / 1e9)

print('Shot: {}s to {}s'.format(start, end))
# [END video_streaming_shot_change_detection_beta]


def track_objects_streaming(path):
# [START video_streaming_object_tracking_beta]
from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.types.StreamingVideoConfig(
feature=(videointelligence.enums.
StreamingFeature.STREAMING_OBJECT_TRACKING))

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
while True:
data = video_file.read(chunk_size)
if not data:
break
stream.append(data)

def stream_generator():
yield config_request
for chunk in stream:
yield videointelligence.types.StreamingAnnotateVideoRequest(
input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

# Each response corresponds to about 1 second of video.
for response in responses:
# Check for errors.
if response.error.message:
print(response.error.message)
break

# Get the time offset of the response.
frame = response.annotation_results.object_annotations[0].frames[0]
time_offset = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
print('{}s:'.format(time_offset))

for annotation in response.annotation_results.object_annotations:
description = annotation.entity.description
confidence = annotation.confidence

# track_id tracks the same object in the video.
track_id = annotation.track_id

print('\tEntity description: {}'.format(description))
print('\tTrack Id: {}'.format(track_id))
if annotation.entity.entity_id:
print('\tEntity id: {}'.format(annotation.entity.entity_id))

print('\tConfidence: {}'.format(confidence))

# Every annotation has only one frame
frame = annotation.frames[0]
box = frame.normalized_bounding_box
print('\tBounding box position:')
print('\tleft : {}'.format(box.left))
print('\ttop : {}'.format(box.top))
print('\tright : {}'.format(box.right))
print('\tbottom: {}\n'.format(box.bottom))
# [END video_streaming_object_tracking_beta]


def detect_explicit_content_streaming(path):
# [START video_streaming_explicit_content_detection_beta]
from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.types.StreamingVideoConfig(
feature=(videointelligence.enums.StreamingFeature.
STREAMING_EXPLICIT_CONTENT_DETECTION))

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
while True:
data = video_file.read(chunk_size)
if not data:
break
stream.append(data)

def stream_generator():
yield config_request
for chunk in stream:
yield videointelligence.types.StreamingAnnotateVideoRequest(
input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

# Each response corresponds to about 1 second of video.
for response in responses:
# Check for errors.
if response.error.message:
print(response.error.message)
break

for frame in response.annotation_results.explicit_annotation.frames:
time_offset = (frame.time_offset.seconds +
frame.time_offset.nanos / 1e9)
pornography_likelihood = videointelligence.enums.Likelihood(
frame.pornography_likelihood)

print('Time: {}s'.format(time_offset))
print('\tpornogaphy: {}'.format(pornography_likelihood.name))
# [END video_streaming_explicit_content_detection_beta]


def annotation_to_storage_streaming(path, output_uri):
# [START video_streaming_annotation_to_storage_beta]
from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'
# output_uri = 'gs://path_to_output'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config specifying the output_uri.
# The output_uri is the prefix of the actual output files.
storage_config = videointelligence.types.StreamingStorageConfig(
enable_storage_annotation_result=True,
annotation_result_storage_directory=output_uri)
# Here we use label detection as an example.
# All features support output to GCS.
config = videointelligence.types.StreamingVideoConfig(
feature=(videointelligence.enums.
StreamingFeature.STREAMING_LABEL_DETECTION),
storage_config=storage_config)

# config_request should be the first in the stream of requests.
config_request = videointelligence.types.StreamingAnnotateVideoRequest(
video_config=config)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, 'rb') as video_file:
while True:
data = video_file.read(chunk_size)
if not data:
break
stream.append(data)

def stream_generator():
yield config_request
for chunk in stream:
yield videointelligence.types.StreamingAnnotateVideoRequest(
input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
responses = client.streaming_annotate_video(requests)

for response in responses:
# Check for errors.
if response.error.message:
print(response.error.message)
break

print('Storage URI: {}'.format(response.annotation_results_uri))
# [END video_streaming_annotation_to_storage_beta]


if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
Expand All @@ -300,6 +623,29 @@ def track_objects(path):
'track-objects', help=track_objects.__doc__)
video_object_tracking_parser.add_argument('path')

video_streaming_labels_parser = subparsers.add_parser(
'streaming-labels', help=detect_labels_streaming.__doc__)
video_streaming_labels_parser.add_argument('path')

video_streaming_shot_change_parser = subparsers.add_parser(
'streaming-shot-change', help=detect_shot_change_streaming.__doc__)
video_streaming_shot_change_parser.add_argument('path')

video_streaming_objects_parser = subparsers.add_parser(
'streaming-objects', help=track_objects_streaming.__doc__)
video_streaming_objects_parser.add_argument('path')

video_streaming_explicit_content_parser = subparsers.add_parser(
'streaming-explicit-content',
help=detect_explicit_content_streaming.__doc__)
video_streaming_explicit_content_parser.add_argument('path')

video_streaming_annotation_to_storage_parser = subparsers.add_parser(
'streaming-annotation-storage',
help=annotation_to_storage_streaming.__doc__)
video_streaming_annotation_to_storage_parser.add_argument('path')
video_streaming_annotation_to_storage_parser.add_argument('output_uri')

args = parser.parse_args()

if args.command == 'transcription':
Expand All @@ -312,3 +658,13 @@ def track_objects(path):
track_objects_gcs(args.gcs_uri)
elif args.command == 'track-objects':
track_objects(args.path)
elif args.command == 'streaming-labels':
detect_labels_streaming(args.path)
elif args.command == 'streaming-shot-change':
detect_shot_change_streaming(args.path)
elif args.command == 'streaming-objects':
track_objects_streaming(args.path)
elif args.command == 'streaming-explicit-content':
detect_explicit_content_streaming(args.path)
elif args.command == 'streaming-annotation-storage':
annotation_to_storage_streaming(args.path, args.output_uri)
Loading

0 comments on commit da04c4b

Please sign in to comment.