Skip to content

Ghernandez1991/Pandas-VideoGame-Sales-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This project uses Python and in particular the Pandas Library to analyze csv data. The data is from a fictional video game company, regarding their sales and their customer demograpic.

Using the Pandas library, we are able to parse the data and uncover key customer insights.

1- Player Count

2- Total Number of Players

3- A look at all purchases on an aggregate level

4- Number of Unique Items

5- Average Purchase Price

6- Total Number of Purchases

7- Total Revenue

8 - Gender Demographics-----------------------------------------------------------------------------------------------------------------

A- Percentage and Count of Male Players B- Percentage and Count of Female Players C- Percentage and Count of Other / Non-Disclosed

9- Purchasing Analysis (Gender)----------------------------------------------------------------------------------------------------- The below each broken by gender

A- Purchase Count B- Average Purchase Price C- Total Purchase Value D- Average Purchase Total per Person by Gender

10 -Age Demographics---------------------------------------------------------------------------------------------------------------

The below each broken into bins of 4 years (i.e. <10, 10-14, 15-19, etc.)

A- Purchase Count B- Average Purchase Price C- Total Purchase Value D- Average Purchase Total per Person by Age Group

11- Top Spenders--------------------------------------------------------------------------------------------------------------------

Identify the the top 5 spenders in the game by total purchase value, then list (in a table):

A- SN B- Purchase Count C- Average Purchase Price D- Total Purchase Value

12- Most Popular Items-------------------------------------------------------------------------------------------------------------

Identify the 5 most popular items by purchase count, then list (in a table):

A- Item ID B- Item Name C- Purchase Count D- Item Price E- Total Purchase Value

Image description

13- Most Profitable Items------------------------------------------------------------------------------------------------------------

Identify the 5 most profitable items by total purchase value, then list (in a table):

A- Item ID B- Item Name C- Purchase Count D- Item Price E- Total Purchase Value

About

Data analysis of video game sales data using Python.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published