Skip to content

Commit

Permalink
Maintenance: fix CI test errors (dask#366)
Browse files Browse the repository at this point in the history
* np.bool8 is deprecated, use np.bool_ instead

* Remove runtime warning check from pytest imread tests

* Update pytest fixtures (class syntax may no longer be supported in the way we use it here)

* pytest.warns no longer accepts None as input

* These examples no longer produce a warning, index.ndim is not greater than 1

* pytest.skip reason needs to be an unnamed argument

---------

Co-authored-by: jakirkham <jakirkham@gmail.com>
  • Loading branch information
GenevieveBuckley and jakirkham authored May 14, 2024
1 parent 23d3804 commit 54a3925
Show file tree
Hide file tree
Showing 6 changed files with 129 additions and 123 deletions.
6 changes: 3 additions & 3 deletions dask_image/ndmorph/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ def _get_structure(image, structure):
raise RuntimeError(
"`structure` must have the same rank as `image`."
)
if not issubclass(structure.dtype.type, np.bool8):
if not issubclass(structure.dtype.type, np.bool_):
structure = (structure != 0)
else:
raise TypeError("`structure` must be an array.")
Expand Down Expand Up @@ -59,9 +59,9 @@ def _get_mask(image, mask):
if isinstance(mask, (np.ndarray, da.Array)):
if mask.shape != image.shape:
raise RuntimeError("`mask` must have the same shape as `image`.")
if not issubclass(mask_type, np.bool8):
if not issubclass(mask_type, np.bool_):
mask = (mask != 0)
elif issubclass(mask_type, np.bool8):
elif issubclass(mask_type, np.bool_):
mask = bool(mask)
else:
raise TypeError("`mask` must be a Boolean or an array.")
Expand Down
31 changes: 14 additions & 17 deletions tests/test_dask_image/test_imread/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,17 +33,17 @@ def test_errs_imread(err_type, nframes):
]
)
@pytest.mark.parametrize(
"nframes, shape, runtime_warning",
"nframes, shape",
[
(1, (1, 4, 3), None),
(-1, (1, 4, 3), None),
(3, (1, 4, 3), "`nframes` larger than"),
(1, (5, 4, 3), None),
(2, (5, 4, 3), "`nframes` does not nicely divide"),
(1, (10, 5, 4, 3), None),
(5, (10, 5, 4, 3), None),
(10, (10, 5, 4, 3), None),
(-1, (10, 5, 4, 3), None),
(1, (1, 4, 3)),
(-1, (1, 4, 3)),
(3, (1, 4, 3)),
(1, (5, 4, 3)),
(2, (5, 4, 3)),
(1, (10, 5, 4, 3)),
(5, (10, 5, 4, 3)),
(10, (10, 5, 4, 3)),
(-1, (10, 5, 4, 3)),
]
)
@pytest.mark.parametrize(
Expand All @@ -61,7 +61,7 @@ def test_errs_imread(err_type, nframes):
False,
]
)
def test_tiff_imread(tmpdir, seed, nframes, shape, runtime_warning, dtype, is_pathlib_Path): # noqa: E501
def test_tiff_imread(tmpdir, seed, nframes, shape, dtype, is_pathlib_Path): # noqa: E501
np.random.seed(seed)

dirpth = tmpdir.mkdir("test_imread")
Expand All @@ -77,12 +77,9 @@ def test_tiff_imread(tmpdir, seed, nframes, shape, runtime_warning, dtype, is_pa
with tifffile.TiffWriter(fn) as fh:
for i in range(len(a)):
fh.save(a[i], contiguous=True)

with pytest.warns(None if runtime_warning is None
else RuntimeWarning, match=runtime_warning):
if is_pathlib_Path:
fn = pathlib.Path(fn)
d = dask_image.imread.imread(fn, nframes=nframes)
if is_pathlib_Path:
fn = pathlib.Path(fn)
d = dask_image.imread.imread(fn, nframes=nframes)

if nframes == -1:
nframes = shape[0]
Expand Down
203 changes: 107 additions & 96 deletions tests/test_dask_image/test_ndfilters/test__threshold.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,62 @@

from dask_image.ndfilters import threshold_local

@pytest.fixture
def simple_test_image():
image = da.from_array(np.array(
[[0, 0, 1, 3, 5],
[0, 1, 4, 3, 4],
[1, 2, 5, 4, 1],
[2, 4, 5, 2, 1],
[4, 5, 1, 0, 0]], dtype=int), chunks=(5, 5))
return image


# ==================================================
# Test Threshold Filters
# ==================================================

@pytest.mark.parametrize('block_size', [
3,
[3, 3],
np.array([3, 3]),
da.from_array(np.array([3, 3]), chunks=1),
da.from_array(np.array([3, 3]), chunks=2),
])
def test_threshold_local_gaussian(simple_test_image, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, True],
[False, False, True, True, False],
[False, True, True, False, False],
[True, True, False, False, False]]
)
out = threshold_local(simple_test_image, block_size, method='gaussian')
assert_equal(ref, (simple_test_image > out).compute())

out = threshold_local(simple_test_image, block_size, method='gaussian',
param=1./3.)
assert_equal(ref, (simple_test_image > out).compute())


@pytest.mark.parametrize('block_size', [
3,
[3, 3],
np.array([3, 3]),
da.from_array(np.array([3, 3]), chunks=1),
da.from_array(np.array([3, 3]), chunks=2),
])
def test_threshold_local_mean(simple_test_image, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, True],
[False, False, True, True, False],
[False, True, True, False, False],
[True, True, False, False, False]]
)
out = threshold_local(simple_test_image, block_size, method='mean')
assert_equal(ref, (simple_test_image > out).compute())


@pytest.mark.parametrize('block_size', [
3,
Expand All @@ -13,99 +69,54 @@
da.from_array(np.array([3, 3]), chunks=1),
da.from_array(np.array([3, 3]), chunks=2),
])
class TestSimpleImage:
def setup(self):
self.image = da.from_array(np.array(
[[0, 0, 1, 3, 5],
[0, 1, 4, 3, 4],
[1, 2, 5, 4, 1],
[2, 4, 5, 2, 1],
[4, 5, 1, 0, 0]], dtype=int), chunks=(5, 5))

def test_threshold_local_gaussian(self, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, True],
[False, False, True, True, False],
[False, True, True, False, False],
[True, True, False, False, False]]
)
out = threshold_local(self.image, block_size, method='gaussian')
assert_equal(ref, (self.image > out).compute())

out = threshold_local(self.image, block_size, method='gaussian',
param=1./3.)
assert_equal(ref, (self.image > out).compute())

def test_threshold_local_mean(self, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, True],
[False, False, True, True, False],
[False, True, True, False, False],
[True, True, False, False, False]]
)
out = threshold_local(self.image, block_size, method='mean')
assert_equal(ref, (self.image > out).compute())

def test_threshold_local_median(self, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, True, False],
[False, True, False, False, False]]
)
out = threshold_local(self.image, block_size, method='median')
assert_equal(ref, (self.image > out).compute())


class TestGenericFilter:
def setup(self):
self.image = da.from_array(np.array(
[[0, 0, 1, 3, 5],
[0, 1, 4, 3, 4],
[1, 2, 5, 4, 1],
[2, 4, 5, 2, 1],
[4, 5, 1, 0, 0]], dtype=int), chunks=(5, 5))

def test_threshold_local_generic(self):
ref = np.array(
[[1., 7., 16., 29., 37.],
[5., 14., 23., 30., 30.],
[13., 24., 30., 29., 21.],
[25., 29., 28., 19., 10.],
[34., 31., 23., 10., 4.]]
)
unchanged = threshold_local(self.image, 1, method='generic', param=sum)
out = threshold_local(self.image, 3, method='generic', param=sum)
assert np.allclose(unchanged.compute(), self.image.compute())
assert np.allclose(out.compute(), ref)

def test_threshold_local_generic_invalid(self):
expected_error_message = "Must include a valid function to use as "
"the 'param' keyword argument."
with pytest.raises(ValueError) as e:
threshold_local(self.image, 3, method='generic', param='sum')
assert e == expected_error_message


class TestInvalidArguments:
def setup(self):
self.image = da.from_array(np.array(
[[0, 0, 1, 3, 5],
[0, 1, 4, 3, 4],
[1, 2, 5, 4, 1],
[2, 4, 5, 2, 1],
[4, 5, 1, 0, 0]], dtype=int), chunks=(5, 5))

@pytest.mark.parametrize("method, block_size, error_type", [
('median', np.nan, TypeError),
])
def test_nan_blocksize(self, method, block_size, error_type):
with pytest.raises(error_type):
threshold_local(self.image, block_size, method=method)

def test_invalid_threshold_method(self):
with pytest.raises(ValueError):
threshold_local(self.image, 3, method='invalid')
def test_threshold_local_median(simple_test_image, block_size):
ref = np.array(
[[False, False, False, False, True],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, True, False],
[False, True, False, False, False]]
)
out = threshold_local(simple_test_image, block_size, method='median')
assert_equal(ref, (simple_test_image > out).compute())


# ==================================================
# Test Generic Filters
# ==================================================

def test_threshold_local_generic(simple_test_image):
ref = np.array(
[[1., 7., 16., 29., 37.],
[5., 14., 23., 30., 30.],
[13., 24., 30., 29., 21.],
[25., 29., 28., 19., 10.],
[34., 31., 23., 10., 4.]]
)
unchanged = threshold_local(simple_test_image, 1, method='generic', param=sum)
out = threshold_local(simple_test_image, 3, method='generic', param=sum)
assert np.allclose(unchanged.compute(), simple_test_image.compute())
assert np.allclose(out.compute(), ref)

def test_threshold_local_generic_invalid(simple_test_image):
expected_error_message = "Must include a valid function to use as "
"the 'param' keyword argument."
with pytest.raises(ValueError) as e:
threshold_local(simple_test_image, 3, method='generic', param='sum')
assert e == expected_error_message


# ==================================================
# Test Invalid Arguments
# ==================================================

@pytest.mark.parametrize("method, block_size, error_type", [
('median', np.nan, TypeError),
])
def test_nan_blocksize(simple_test_image, method, block_size, error_type):
with pytest.raises(error_type):
threshold_local(simple_test_image, block_size, method=method)

def test_invalid_threshold_method(simple_test_image):
with pytest.raises(ValueError):
threshold_local(simple_test_image, 3, method='invalid')
2 changes: 1 addition & 1 deletion tests/test_dask_image/test_ndinterp/test_spline_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ def test_spline_filter1d_general(
axis,
):
if axis == 1 and n < 2:
pytest.skip(msg="skip axis=1 for 1d signals")
pytest.skip("skip axis=1 for 1d signals")

validate_spline_filter(
n=n,
Expand Down
4 changes: 1 addition & 3 deletions tests/test_dask_image/test_ndmeasure/test__utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,8 +55,6 @@ def test__norm_input_labels_index():

@pytest.mark.parametrize(
"shape, chunks, ind", [
((15, 16), (4, 5), 1),
((15, 16), (4, 5), [1]),
((15, 16), (4, 5), [[1, 2, 3, 4]]),
((15, 16), (4, 5), [[1, 2], [3, 4]]),
((15, 16), (4, 5), [[[1], [2], [3], [4]]]),
Expand All @@ -78,7 +76,7 @@ def test__norm_input_labels_index_warn(shape, chunks, ind):
ind = np.array(ind)
d_ind = da.from_array(ind, chunks=1)

with pytest.warns(None) as w:
with pytest.warns(FutureWarning) as w:
dask_image.ndmeasure._utils._norm_input_labels_index(
d, d_lbls, d_ind
)
Expand Down
6 changes: 3 additions & 3 deletions tests/test_dask_image/test_ndmorph/test__utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def test__get_iterations(expected, iterations):
@pytest.mark.parametrize(
"expected, a",
[
(np.bool8, False),
(np.bool_, False),
(np.int_, 2),
(np.float64, 3.1),
(np.complex128, 1 + 2j),
Expand All @@ -150,12 +150,12 @@ def test__get_dtype(expected, a):
(
True,
da.arange(2, dtype=bool, chunks=(2,)),
np.bool8(True)
np.bool_(True)
),
(
False,
da.arange(2, dtype=bool, chunks=(2,)),
np.bool8(False)
np.bool_(False)
),
(
np.arange(2, dtype=bool),
Expand Down

0 comments on commit 54a3925

Please sign in to comment.