forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
implementation of logistic regression for binary classification
- Loading branch information
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
|
||
# # Logistic Regression from scratch | ||
|
||
# In[62]: | ||
|
||
|
||
''' Implementing logistic regression for classification problem | ||
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac''' | ||
|
||
|
||
# In[63]: | ||
|
||
|
||
#importing all the required libraries | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
get_ipython().run_line_magic('matplotlib', 'inline') | ||
from sklearn import datasets | ||
|
||
|
||
# In[67]: | ||
|
||
|
||
#sigmoid function or logistic function is used as a hypothesis function in classification problems | ||
def sigmoid_function(z): | ||
return 1/(1+np.exp(-z)) | ||
|
||
|
||
def cost_function(h,y): | ||
return (-y*np.log(h)-(1-y)*np.log(1-h)).mean() | ||
|
||
# here alpha is the learning rate, X is the featue matrix,y is the target matrix | ||
def logistic_reg(alpha,X,y,max_iterations=70000): | ||
converged=False | ||
iterations=0 | ||
theta=np.zeros(X.shape[1]) | ||
|
||
num_iterations=0 | ||
while not converged: | ||
z=np.dot(X,theta) | ||
h=sigmoid_function(z) | ||
gradient = np.dot(X.T,(h-y))/y.size | ||
theta=theta-(alpha)*gradient | ||
|
||
z=np.dot(X,theta) | ||
h=sigmoid_function(z) | ||
e=cost_function(h,y) | ||
print('J=',e) | ||
J=e | ||
|
||
iterations+=1 #update iterations | ||
|
||
|
||
if iterations== max_iterations: | ||
print("Maximum iterations exceeded!") | ||
converged=True | ||
|
||
return theta | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# In[68]: | ||
|
||
|
||
if __name__=='__main__': | ||
iris=datasets.load_iris() | ||
X = iris.data[:, :2] | ||
y = (iris.target != 0) * 1 | ||
|
||
alpha=0.1 | ||
theta=logistic_reg(alpha,X,y,max_iterations=70000) | ||
print(theta) | ||
def predict_prob(X): | ||
return sigmoid_function(np.dot(X,theta)) # predicting the value of probability from the logistic regression algorithm | ||
|
||
|
||
plt.figure(figsize=(10, 6)) | ||
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0') | ||
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1') | ||
x1_min, x1_max = X[:,0].min(), X[:,0].max(), | ||
x2_min, x2_max = X[:,1].min(), X[:,1].max(), | ||
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) | ||
grid = np.c_[xx1.ravel(), xx2.ravel()] | ||
probs = predict_prob(grid).reshape(xx1.shape) | ||
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='black'); | ||
|
||
plt.legend(); | ||
|
||
|
||
|